K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 5 2020

\(VT=\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(b+c\right)^2}+\frac{1}{\left(c+a\right)^2}\ge\frac{1}{3}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)^2\)

\(VT\ge\frac{1}{3}\left(\frac{9}{2\left(a+b+c\right)}\right)^2=\frac{3}{4}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

NV
25 tháng 5 2020

Đặt vế trái là P

\(P=\left(\frac{1}{1+\frac{b}{a}}\right)^2+\left(\frac{1}{1+\frac{c}{b}}\right)^2+4\left(\frac{1}{1+\frac{a}{c}}\right)^2\)

Đặt \(\left\{{}\begin{matrix}\frac{b}{a}=x>0\\\frac{c}{b}=y>0\end{matrix}\right.\) \(\Rightarrow xy=\frac{c}{a}\ge1\)

\(P=\frac{1}{\left(1+x\right)^2}+\frac{1}{\left(1+y\right)^2}+4\left(\frac{1}{1+\frac{1}{xy}}\right)^2=\frac{1}{\left(1+x\right)^2}+\frac{1}{\left(1+y\right)^2}+4\left(\frac{xy}{1+xy}\right)^2\)

\(P\ge\frac{1}{1+xy}+4\left(\frac{xy}{1+xy}\right)^2\)

Đặt \(xy=t\ge1\Rightarrow P\ge\frac{1}{1+t}+4\left(\frac{t}{1+t}\right)^2\)

Ta chỉ cần chứng minh \(\frac{1}{1+t}+4\left(\frac{t}{1+t}\right)^2\ge\frac{3}{2}\)

\(\Leftrightarrow1+t+4t^2\ge\frac{3}{2}\left(1+t\right)^2\)

\(\Leftrightarrow8t^2+2t+2\ge3t^2+6t+3\)

\(\Leftrightarrow5t^2-4t-1\ge0\Leftrightarrow\left(t-1\right)\left(5t+1\right)\ge0\) (luôn đúng \(\forall t\ge1\))

Dấu "=" xảy ra khi \(t=1\) hay \(a=b=c\)

1 tháng 5 2019

1) Ta có ĐK: 0 < a,b,c < 1

\(\sqrt{\frac{a}{1-a}}=\frac{a}{\sqrt{a\left(1-a\right)}}\ge2a\) (BĐT AM-GM cho 2 số a và 1-a)

Tương tự, ta có \(\sqrt{\frac{b}{1-b}}=\frac{b}{\sqrt{b\left(1-b\right)}}\ge2b\)\(\sqrt{\frac{c}{1-c}}=\frac{c}{\sqrt{c\left(1-c\right)}}\ge2c\)

\(\sqrt{\frac{a}{1-a}}+\sqrt{\frac{b}{1-b}}+\sqrt{\frac{c}{1-c}}\ge2\left(a+b+c\right)=2\)(do a+b+c=1)

Dấu đẳng thức xảy ra \(\Leftrightarrow\) a = b = c = \(\frac{1}{2}\) (không thoả mãn điều kiện a+b+c=1)

Dấu đẳng thức trên không xảy ra được. Vậy ta có bất đẳng thức\(\sqrt{\frac{a}{1-a}}+\sqrt{\frac{b}{1-b}}+\sqrt{\frac{c}{1-c}}>2\)

NV
6 tháng 7 2020

Quy đồng giả thiết lên:

\(\Leftrightarrow a\left(1+a\right)\left(1+c\right)+b\left(1+b\right)\left(1+a\right)+c\left(1+c\right)\left(1+b\right)=\left(1+a\right)\left(1+b\right)\left(1+c\right)\)

\(\Leftrightarrow a+b+c+ab+bc+ca+a^2\left(1+c\right)+b^2\left(1+a\right)+c^2\left(1+b\right)=1+a+b+c+ab+bc+ca+abc\)

\(\Leftrightarrow a^2\left(1+c\right)+b^2\left(1+a\right)+c^2\left(1+b\right)=1+abc\)

1 tháng 12 2019

sai đề

1 tháng 12 2019

\(\frac{a}{\left(a+1\right)\left(b+1\right)}+\frac{b}{\left(b+1\right)\left(c+1\right)}\frac{c}{\left(c+1\right)\left(a+1\right)}\ge\frac{3}{4}\)

Bn giúp mình vs ạ

27 tháng 5 2018

Nhầm, bỏ bớt 1 cái 1/3 đi

27 tháng 5 2018

tích đi rồi Pain làm