Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n^2+9n-2
=n^2+11n-2n-22+20
=(n+11)(n^2-2)+20
n^2+9n-2 chia hết cho n+11
<=>n+11 là Ư(20) (n+11>11)
n+11=20=>n=9
Vậy n=9
Bài 1: n có 4 chữ số dạng 20ab => 20ab + 2 + a +b=2013 => 11a+b=11
a=0 => b=11(loại)
a=1 => b=0 => n=2010
với n<2000 => tổng các chữ số của n lớn nhất là: 1+9+9+9=28 => n ≥ 2013-28=1985
xét n có dạng 19ab: 19ab+1+9+a+b=2013 => 11a+b=103
do n ≥ 1985 => a ≥ 8
a=8 => b=7,5 (loại)
a=9 => b=2 => n=1992
Bài 2: Chắc là hợp số :D
từ \(a^2+b^2+c^2=e^2+f^2+d^2\)
=> \(a^2+b^2+c^2\text{ ≡}d^2+e^2+f^2\)(mod 2)
=> \(a^2+b^2+c^2+2\left(ab+bc+ca\right)\) ≡ \(d^2+e^2+f^2+2\left(de+ef+fd\right)\)(mod 2)
=>\(\left(a+b+c\right)^2\text{ ≡}\left(d+e+f\right)^2\) (mod 2)
=>a+b+c ≡ d+e+f (mod 2)
=> a+b+c+d+e+f chia hết cho 2
d 10^n+72^n -1
=10^n -1+72n
=(10-1) [10^(n-1)+10^(n-2)+ .....................+10+1]+72n
=9[10^(n-1)+10^(n-2)+..........................-9n+81n
Trường hợp: n là số chẵn
Đặt n=2kn=2k⇒2n+32+42=4k++32k+42k⇒2n+32+42=4k++32k+42k chia cho 3 dư 2 nên không phải là số chính phương
Trường hợp: n là số lẽ.
Với n=1n=1 thì 2n+3n+4n=92n+3n+4n=9 là số chính phương.
Với n≥3n≥3
Đặt n=2t+1(t≥1)⇒2n+3n+4n=2.(4t)+3.(9t)+42t+1n=2t+1(t≥1)⇒2n+3n+4n=2.(4t)+3.(9t)+42t+1 chia cho 4 dư 3 nên không phải là số chính phương.
Vậy ta chọn n=1