Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ ta có
5n^3 - 9n^2 + 15n - 27 = (5n - 9)(n^2 + 3)
- với n = 0 ta có 5n^3 - 9n^2 + 15n - 27 = -27 loại
- với n = 1 ta có 5n^3 - 9n^2 + 15n - 27 = -16 loại
- với n = 2 ta có 5n^3 - 9n^2 + 15n - 27 = 7 nhận
- với n > 2 ta có 5n - 9 > 1 và n^2 + 3 > 7 => không thể là số nguyên tố
n=2=>biểu thức có dạng:
23-22-2-2=0(0 ko phải số nguyên tố)
=> n=2(loại)
n=3=>biểu thức có dạng:
33-32-3-2=13(13 là số nguyên tố)
=> n=3
(Xin nói luôn,mấy dạng toán kiểu số nguyên tố này thì kết quả luôn =3,tiện cho mình cái tích)
Sai rồi bạn ạ mình có kết quả nè ^-^:
P = n3 - n2 - n - 1 - 1
P = (n3 -1) - (n2 + n +1)
P = (n - 1)(n2 + n + 1) - (n2 + n + 1)
P = (n2 + n + 1)(n - 2)
Vì n \(\in\) N
\(\Rightarrow\) n2 + n +1 > n – 2
Để P là sốnguyên tố:
\(\Rightarrow\) P là SNT > 1
\(\Rightarrow\)P chỉ có 2 ước là 1 và chính nó
n - 2 = 1
n = 3
Thay n = 3
P = (32 + 3 + 1)(3 - 2)
P = 13 . 1
P = 13
Vậy n = 3 thì P là SNT
ta có: gọi A là đa thức trên
A=\(5n^3-9n^2+15n-27\)
=\(n^2\left(5n-9\right)+3\left(5n-9\right)\)
=\(\left(5n-9\right)\left(n^2+3\right)\)
vì: \(n^2+2>0\Rightarrow n^2+3>1\)
\(\Rightarrow\)\(n^2+3\) không thể bằng 1 \(\forall n\in N\)
\(\Rightarrow5n-9=1\Rightarrow n=2\left(n\in N\right)\)
Vậy n=2 thì A là số nguyên tố (A=7)