Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(\text{a) }x.x^2.x^3.x^4.x^5.....x^{49}.x^{50}\)
\(=x^{1+2+3+4+5+...+49+50}\)
\(=x^{\frac{51.50}{2}}\)
\(=x^{1275}\)
\(\text{b) Ta có:}\)
\(4^{15}=\left(2^2\right)^{15}=2^{2.15}=2^{30}\)
\(8^{11}=\left(2^3\right)^{11}=2^{3.11}=2^{33}\)
\(\text{Vì }2^{30}< 2^{33}\text{ nên }4^{15}< 8^{11}\)
Bài 2: Tìm x
\(\left(x-1\right)^4:3^2=3^6\)
\(\Rightarrow\left(x-1\right)^4=3^6\times3^2\)
\(\Rightarrow\left(x-1\right)^4=3^8\)
\(\Rightarrow\left(x-1\right)^4=3^{2.4}\)
\(\Rightarrow\left(x-1\right)^4=\left(3^2\right)^4\)
\(\Rightarrow x-1=9\)
\(\Rightarrow x=10\)
Bài 3 và bài 4 mk làm sau
Bài 1 : a) \(x.x^2.x^3.x^4.....x^{49}.x^{50}=x^{1+2+3+...+49+50}\) (Dễ rồi tự tính)
b) \(\hept{\begin{cases}4^{15}=\left(2^2\right)^{15}=2^{30}\\8^{11}=\left(2^3\right)^{11}=2^{33}\end{cases}}\)Rồi tự so sánh đi
Bài 2 :
\(\left(x-1\right)^4\div3^2=3^6\Leftrightarrow\left(x-1\right)^4=3^8=\left(3^2\right)^4=9^4\Leftrightarrow x-1=9\Leftrightarrow x=10\)
Bài 3 :
\(\hept{\begin{cases}27^{15}=\left(3^3\right)^{15}=3^{45}\\81^{11}=\left(3^4\right)^{11}=3^{44}\end{cases}}\) nt
\(\frac{x-1}{2018}+\frac{x-7}{503}=\frac{x-3}{1008}+\frac{x-9}{670}\)
\(\Leftrightarrow\frac{x-1}{2018}-1+\frac{x-7}{503}-4=\frac{x-3}{1008}-2+\frac{x-9}{670}-3\)
\(\Leftrightarrow\left(x-2019\right)\left(\frac{1}{2018}+\frac{1}{503}-\frac{1}{1008}-\frac{1}{670}\right)=0\)
\(\Rightarrow x=2019\)
#CBHT
Đặt A =1/2+1/4+1/8+...+1/1024
2A= 1+1/2+1/4+...+1/512
A= 1-1/1024
=>A<1hay ...
a, \(2.x^x=10.3^{12}+8.27^4\)
\(2.x^x=10.3^{12}+8.3^{12}\)
\(2.x^x=3^{12}.\left(10+8\right)\)
\(2.x^x=3^{12}.18\)
\(2.x^x=3^{12}.2.3^3\)
\(2.x^x=3^{15}.2\)
\(x^x=3^{15}\)( Hình như sai đề )
b,\(3^{2x+2}=9^{x+3}\)
\(3^{2x+2}=3^{2x+3}\)
a, \(2\cdot2^2\cdot2^3\cdot2^4\cdot...\cdot2^x=1024\)
\(\Leftrightarrow2^{1+2+3+4+...+x}=2^{10}\Leftrightarrow1+2+3+4+...+x=10\)
\(\Rightarrow\left(x+1\right)x\div2=10\Rightarrow\left(x+1\right)x=20\)
Vì : ( x + 1 ) x là hai số tự nhiên liên tiếp \(\Rightarrow x=4\in Z\)
Vậy x = 4
b, \(9.27< 3^x< 243\Leftrightarrow3^5< 3^x< 3^5\)
\(\Rightarrow5< x< 5\Rightarrow x\in\varnothing\)
Vậy \(x\in\varnothing\)