Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(x\times\left(-2\right)-9\div\left(-3\right)=\left(2-7\right)^2\)
\(x\times\left(-2\right)-\left(-3\right)=\left(-5\right)^2\)
\(x\times\left(-2\right)-\left(-3\right)=25\)
\(x\times\left(-2\right)=25+\left(-3\right)\)
\(x\times\left(-2\right)=22\)
\(x=22:\left(-2\right)\)
\(x=\left(-11\right)\)
Vậy : x = ( -11 )
b) ( - 1) . ( -2 ) . (-3 ) ..... ( -2014)
Dãy số trên có tất cả ( 2014 - 1 ) : 1 + 1 = 2014 số hạng
=> a là 1 số nguyên dương
=> a > 0 là đúng < vì số nguyên dương lớn hơn 0 và tích trên không thể bằng không >
c) \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}...+\frac{1}{2013^2}\)
Ta có : \(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
....................
\(\frac{1}{2013^2}< \frac{1}{2012.2013}\)
\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2013^2}< \frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2012.2013}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2013^2}< \frac{1}{2^2}+\frac{1}{2}-\frac{1}{2013}\)
\(\Rightarrow A< \frac{3}{4}-\frac{1}{2013}< \frac{3}{4}\)
Vậy : \(A< \frac{3}{4}\)
1. \(\frac{-7}{12}\)< \(\frac{x-1}{4}\)< \(\frac{2}{3}\)
=> \(\frac{-7}{12}\)< \(\frac{3.\left(x-1\right)}{12}\)< \(\frac{8}{12}\)
=> 3 . ( x - 1 ) thuộc { - 6 ; - 5 ; - 4 ; - 3 ; - 2 ; - 1 ; 0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7}
Lập bảng tính giá trị x , cái này dễ lên bạn tự làm nha
1/ \(-\frac{7}{12}< \frac{x-1}{4}< \frac{2}{3}\)
hay \(\frac{-7}{12}< \frac{3.\left(x-1\right)}{12}< \frac{8}{12}\)
Vậy \(-7< 3.\left(x-1\right)< 8\)
Vậy \(3.\left(x-1\right)\in\left\{-6;-5;-4;...;7\right\}\)
mà \(x\in Z\)nên \(3.\left(x-1\right)⋮3\)
Vậy \(3.\left(x-1\right)\in\left\{-6;-3;0;3;6\right\}\)
hay \(x-1\in\left\{-2;-1;0;1;2\right\}\)
tới đây dễ rồi thì làm nốt nhé, để thời gian làm mấy câu sau!
\(a)\frac{1}{3}+\frac{-2}{5}+\frac{1}{6}+\frac{-1}{5}\le x< \frac{-3}{4}+\frac{2}{7}+\frac{-1}{4}+\frac{3}{5}+\frac{5}{7}\)
\(\Rightarrow\frac{1}{3}+\frac{1}{6}+\frac{-2}{5}+\frac{-1}{5}\le x< \frac{-3}{4}+\frac{-1}{4}+\frac{2}{7}+\frac{5}{7}+\frac{3}{5}\)
\(\Rightarrow\frac{2}{6}+\frac{1}{6}+\frac{-3}{5}\le x< -1+1+\frac{3}{5}\)
\(\Rightarrow\frac{1}{2}+\frac{-3}{5}\le x< \frac{3}{5}\)
\(\Rightarrow\frac{-1}{10}\le x< \frac{6}{10}\)
\(\Rightarrow-1\le x< 6\)
\(\Rightarrow x\in\left\{-1;0;1;2;3;4;5\right\}\)
Bài b tương tự
\(\frac{2}{7}< \frac{x}{3}< \frac{11}{4};x\inℕ\)
=>\(\frac{12.2}{84}< \frac{28x}{84}< \frac{11.21}{84}\)
=>\(\frac{24}{84}< \frac{28x}{84}< \frac{231}{84}\)
=>24<28x<231
=>28x\(\in\){25;26;27;28;.............................;230}
=>Các số chia hết cho 28 là:28;56;84;112;140;168;196;224
=>x (thỏa mãn)\(\in\){1;2;3;4;5;6;7;8}
Vậy x\(\in\) {1;2;3;4;5;6;7;8}
\(\left(4,5m-\frac{3}{4}.5\frac{1}{3}\right).\frac{1}{12}+\frac{1}{2}x=1\frac{1}{2}\)
\(\left(4,5m-\frac{3}{4}.\frac{16}{3}\right).\frac{1}{2}.\frac{1}{6}+\frac{1}{2}x=\frac{3}{2}\)
\(\left(4,5m-\frac{48}{12}\right).\frac{1}{2}.\left(\frac{1}{6}+x\right)=\frac{3}{2}\)
\(\left(4,5m-4\right).\left(\frac{1}{6}+x\right)=\frac{3}{2}:\frac{1}{2}\)
\(\left(4,5m-4\right).\left(\frac{1}{6}+x\right)=\frac{3}{2}.\frac{2}{1}\)
\(\left(4,5m-4\right).\left(\frac{1}{6}+x\right)=\frac{6}{2}\)
\(\left(4,5m-4\right).\left(\frac{1}{6}+x\right)=3\)
=>3\(⋮\)\(\frac{1}{6}+x\)
=>\(\frac{1}{6}+x\)\(\in\)Ư(3)={\(\pm\)1;\(\pm\)3}
Ta có bảng:
\(\frac{1}{6}+x\) | -1 | 1 | -3 | 3 |
x | \(-1\frac{1}{6}\) | \(1\frac{1}{6}\) | \(-3\frac{1}{6}\) | 3\(\frac{1}{6}\) |
Vậy x\(\in\){\(-1\frac{1}{6}\);\(1\frac{1}{6}\);\(-3\frac{1}{6}\);\(\frac{1}{6}\)}
Chúc bn học tốt
\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+\frac{1}{8^2}\)
Ta có : \(\frac{1}{2^2}=\frac{1}{2\cdot2}< \frac{1}{1\cdot2}\)
\(\frac{1}{3^2}=\frac{1}{3\cdot3}< \frac{1}{2\cdot3}\)
...
\(\frac{1}{8^2}=\frac{1}{8\cdot8}< \frac{1}{7\cdot8}\)
Cộng vế theo vế
\(\Rightarrow B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{7\cdot8}\)
\(\Rightarrow B< \frac{1}{1}-\frac{1}{8}=\frac{7}{8}\)
Lại có \(\frac{7}{8}< 1\)
Theo tính chất bắc cầu => \(B< \frac{7}{8}< 1\)
\(\Rightarrow B< 1\left(đpcm\right)\)
Bài 1 : Ta có:
\(\frac{7+\frac{7}{11}+\frac{7}{23}+\frac{7}{31}}{9+\frac{9}{11}+\frac{9}{23}+\frac{9}{31}}\)
= \(\frac{7.\left(1+\frac{1}{11}+\frac{1}{23}+\frac{1}{31}\right)}{9.\left(1+\frac{1}{11}+\frac{1}{23}+\frac{1}{31}\right)}\)
= \(\frac{7}{9}\)
Bài 2 :
\(\frac{x}{2}+\frac{3x}{4}+\frac{5x}{6}=\frac{10}{24}\)
=> \(\frac{12x+18x+20x}{24}=\frac{10}{24}\)
=> 50x = 10
=> x = 10 : 50
=> x = 1/5
Bài 3 : Để A nhận giá trị nguyên thì 3 \(⋮\)x + 3
<=> x + 3 \(\in\)Ư(3) = {1; -1; 3; -3}
Lập bảng :
x + 3 | 1 | -1 | 3 | -3 |
x | -2 | -4 | 0 | -6 |
Vậy