Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để A nhận giá trị nguyên thì 3n+10 phải chia hết cho n+2
Ta có: 3n+10=3.(n+2)+4
\(\Rightarrow\)4 chia hết cho 3n+10
Tức là \(3n+10\in U\left(4\right)\)
Mả \(U\left(4\right)\in\left(1;2;4\right)\)
ta có bảng giá trị sau:
3n+10 | 1 | 2 | 4 |
3n | -9 | -8 | -6 |
n | -3 | -8/3 | -2 |
Lại do: n thuộc Z.
Vay n= -3 ; -2.
\(A=\frac{n+6}{n-1}=\frac{n-1+7}{n-1}=1+\frac{7}{n-1}\inℤ\Leftrightarrow\frac{7}{n-1}\inℤ\)
mà \(n\)là số nguyên nên \(n-1\inƯ\left(7\right)=\left\{-7,-1,1,7\right\}\)
\(\Leftrightarrow n\in\left\{-6,0,2,8\right\}\).
Để A nguyên thì \(n-1\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{2;0;8;-6\right\}\)
để A là số nguyên thì
n+6 chia hết cho n-1
=>(n-1)+7chia hết n-1
=>7chia hết n-1
n-1 thuộc Ư(7)
cậu lập bảng sau đó kết luận hộ tớ nhé
tớ ko lập bảng được
\(\dfrac{6n+1}{2n+1}\left(n\in Z\right)\\ =\dfrac{3\left(2n+1\right)-2}{2n+1}=3-\dfrac{2}{2n+1}\)
Để biểu thức nhận gt nguyên thì : \(\dfrac{2}{2n+1}\in Z\)
\(=>2n+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\\ =>2n\in\left\{0;-2;1;-3\right\}\\ =>n\in\left\{0;-1;\dfrac{1}{2};-\dfrac{3}{2}\right\}\)
Do n nguyên -> Kết luận : n = 0 hoặc n = -1
\(\dfrac{3n+1}{3n-4}\left(n\in Z\right)\\ =\dfrac{3n-4+5}{3n-4}=1+\dfrac{5}{3n-4}\)
Để biểu thức đạt gt nguyên thì : \(\dfrac{5}{3n-4}\in Z\)
\(=>3n-4\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\\ =>3n\in\left\{5;3;9;-1\right\}\\ =>n\in\left\{\dfrac{5}{3};1;3;-\dfrac{1}{3}\right\}\)
Do n nguyên -> Kết luận : \(n\in\left\{1;3\right\}\)
\(\dfrac{3n+1}{3n-4}\) \(=\dfrac{3n-4+5}{3n-4}\) \(=1+\dfrac{5}{3n-4}\)
Để biểu thức nhận giá trị nguyên thì \(5⋮\left(3n-4\right)\)
\(\Rightarrow\left(3n-4\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(3n-4\) | \(-5\) | \(-1\) | \(1\) | \(5\) |
\(n\) | \(-\dfrac{1}{3}\) | \(1\) | \(\dfrac{5}{3}\) | \(3\) |
Vậy \(x=1\) hoặc \(x=3\) thì biểu thức \(\dfrac{3n+1}{3n-4}\) nhận giá trị nguyên
Để A là số nguyên thì \(n-1\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{2;0;8;-6\right\}\)
Ta có:A=\(\frac{3n+2}{n-1}=\frac{3n-3+5}{n-1}=3+\frac{5}{n-1}\)
Để A nguyên thì \(\frac{5}{n-1}\in Z\Rightarrow n-1\inƯ\left(5\right)=\left\{-5,-1,1,5\right\}\)
\(\Rightarrow n\in\left\{-4,0,2,6\right\}\)
Vậy............
Ta có : A= (3n+2)/(n-1)
= [3.( n-1)+5]/(n-1)
=3+[5/(n-1)]
Để A nguyên thì 5 phải chia hết cho n-1
=> n-1 thuộc ước của 5
Ta có bảng sau
x-1 | 1 | -1 | 5 | -5 |
---|---|---|---|---|
x | 2 | 0 | 6 | -4 |
Vậy x\(\in\){ -4 ; 0 ; 2 ; 6 }
\(n\in\left\{1;-1\right\}\)
\(n∊\left\{1;-1\right\}\)