Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
X = một số tự nhiên khác 0
X có giá trị bằng 1 số
Tóm lại X = X không gì có thể chối cãi được.
a) ta có: 3n + 2 chia hết cho n - 1
=> 3n - 3 + 5 chia hết cho n -1
3.(n-1) + 5 chia hết cho n - 1
mà 3.(n-1) chia hết cho n -1
=> 5 chia hết cho n - 1
=> n - 1 thuộc Ư(5)={1;-1;5;-5}
...
rùi bn tự lập bảng xét giá trị hộ mk nha!!!
b) ta có: n^2 + 2n + 7 chia hết cho n + 2
=> n.(n+2) + 7 chia hết cho n + 2
mà n.(n+2) chia hết cho n + 2
=> 7 chia hết cho n + 2
=>...
c) ta có: n^2 + 1 chia hết cho n - 1
=> n^2 - n + n -1 + 2 chia hết cho n - 1
n.(n-1) + (n-1) + 2 chia hết cho n -1
(n-1).(n+1) + 2 chia hết cho n - 1
mà (n-1).(n+1) chia hết cho n - 1
=> 2 chia hết cho n - 1
...
câu e;g bn dựa vào phần a mak lm nha!!!
\(d,n+8⋮n+3\)
\(\Leftrightarrow\left(n+3\right)+5⋮n+3\)
\(\Leftrightarrow n+3⋮n+3\Rightarrow5⋮n+3\)
\(\Leftrightarrow n+3\in\left(1;5\right)\)
\(\Leftrightarrow n+3=1\Rightarrow n=-2\left(l\right)\)
\(\Leftrightarrow n+3=5\Rightarrow n=2\left(c\right)\)
a) \(=2n^3-n^2+2n^2-n+8n-4+5=\left(2n-1\right)\left(n^2+n+4\right)+5\)
vì (2n-1)(n^2+n+4) đã chia hết cho 2n-1 rồi => muốn biểu thức này chia hết cho 2n-1 => 5 phải chia hết cho 2n-1 <=> 2n-1 thuộc Ư(5) <=> 2n-1 thuộc (1;5) (chị k biết lớp 7 đã học đến số nguyên chưa, thôi thì ở đây cứ xét n thuộc N nha. nếu học rồi thì chỉ cần xét thêm các ước âm là ok)
2n-1 | 1 | 5 |
n | 1 | 3 |
=> n thuộc (1;3)
b) \(n^3-2n^2+2n^2-4n+4n-8+6=\left(n-2\right)\left(n^2+2n+4\right)+6\)
vì.... (giải thích như câu a) => n-2 phải thuộc Ư(6) <=> n-2 thuộc (1;2;3;6) <=> (lập bảng như câu a) n thuộc (3;4;5;8)
c) \(n^3+n^2+n-4n^2-4n-4+3=n\left(n^2+n+1\right)-4\left(n^2+n+1\right)+3=\left(n^2+n+1\right)\left(n-4\right)+3\)
vì.... (giải thích như câu a) => n^2+n+1 phải thuộc Ư(3) <=>n^2+n+1 thuộc(1;3) <=>
cái này xét trường hợp nha
n^2+n+1 =1 <=> n(n+1)=0 <=> n=0(t/m ) hoặc n=-1(loại)
th2: \(n^2+n+1=3\Leftrightarrow n^2+n-2=0\Leftrightarrow n^2+2n-n-2=0\Leftrightarrow\left(n+2\right)\left(n-1\right)=0\)
=> n=-2(loại) hoặc n=1
\(n^3+n-n^2-1+n+8=\left(n^2+1\right)\left(n-1\right)+n+8\)nếu lấy đa thức này chia cho n^2+1 ta sẽ đc số dư là n+8 => để là phép chia hết thì n+8=0 <=> n=-8 (loại)
a) = 2n 3 − n 2 + 2n 2 − n + 8n − 4 + 5 = 2n − 1 n 2 + n + 4 + 5 vì (2n-1)(n^2+n+4) đã chia hết cho 2n-1 rồi => muốn biểu thức này chia hết cho 2n-1 => 5 phải chia hết cho 2n-1 <=> 2n-1 thuộc Ư(5) <=> 2n-1 thuộc (1;5) (chị k biết lớp 7 đã học đến số nguyên chưa, thôi thì ở đây cứ xét n thuộc N nha. nếu học rồi thì chỉ cần xét thêm các ước âm là ok) 2n-1 1 5 n 1 3 => n thuộc (1;3) b) n 3 − 2n 2 + 2n 2 − 4n + 4n − 8 + 6 = n − 2 n 2 + 2n + 4 + 6 vì.... (giải thích như câu a) => n-2 phải thuộc Ư(6) <=> n-2 thuộc (1;2;3;6) <=> (lập bảng như câu a) n thuộc (3;4;5;8) c) n 3 + n 2 + n − 4n 2 − 4n − 4 + 3 = n n 2 + n + 1 − 4 n 2 + n + 1 + 3 = n 2 + n + 1 n − 4 + 3 vì.... (giải thích như câu a) => n^2+n+1 phải thuộc Ư(3) <=>n^2+n+1 thuộc(1;3) <=> cái này xét trường hợp nha n^2+n+1 =1 <=> n(n+1)=0 <=> n=0(t/m ) hoặc n=-1(loại) th2: n 2 + n + 1 = 3⇔n 2 + n − 2 = 0⇔n 2 + 2n − n − 2 = 0⇔ n + 2 n − 1 = 0 => n=-2(loại) hoặc n=1 n 3 + n − n 2 − 1 + n + 8 = n 2 + 1 n − 1 + n + 8 nếu lấy đa thức này chia cho n^2+1 ta sẽ đc số dư là n+8 => để là phép chia hết thì n+8=0 <=> n=-8 (loại)
hơi rối một ít k cho mk nha
\(=n\left(2n^2+3n+1\right)=n\left(n+1\right)\left(2n+1\right)\)
(Đặt thừa số chung nhẩm nghiệm đa thức bậc 2 có 1 nghiệm là -1, thực hiện phép chia đa thức bậc 2 cho n+1)
\(=n\left(n+1\right)\left[\left(n+2\right)+\left(n-1\right)\right]=n\left(n+1\right)\left(n+2\right)+\left(n-1\right)n\left(n+1\right)\)
Ta nhận thấy n(n+1)(n+2) và (n-1)n(n+1) là tích của 3 số tự nhiên liên tiếp. Mà trong 3 số tự nhiên liên tiếp bao giờ cũng có ít nhất 1 số chẵn => hai tích trên chia hết cho 2 => Tổng 2 tích trên chia hết cho 2 nên đa thức đã cho chia hết cho 2
Chứng minh bài toán phụ 3 số tự nhiên liên tiếp bao giờ cũng có 1 số chia hết cho 3:
Gọi 3 số tự nhiên liên tiếp là a; a+1; a+2
+ Nếu a chia hết cho 3 thì bài toán đúng
+ Nếu a chia 3 dư 1 thì a=3k+1 => a+2 = 3k+1+2=3k+3 chia hết cho 3
+ Nếu a chia 3 dư 2 thì a=3k+2 => a+1=3k+2+1=3k+3 chia hết cho 3
=> 3 số tự nhiên liên tiếp bao giờ cũng có 1 số chia hết cho 3
Áp dụng vào bài toán thì 2 tích trên chia hết cho 3 => tổng 2 tích chia hết cho 3 nên đa thức đã cho chia hết cho 3
Đa thức đã cho đồng thời chia hết cho cả 2 và 3 nên chia hết cho 2.3=6
xin lỗi nha, bạn giải hình như là cách lớp lớn, mình chẳng hiểu gì hết. Sorry nhưng mình không chọn bạn được, xin lỗi nha!!!
Bạn ơi, giải dùm mình bài
Cho tam giác abc có ab=ac=bc. Hai đường phân giác bm và cm cắt nhau tại i . Chứng minh rằng: a) ia=ib=ic b) góc aib=góc bic=góc cia
nhaa