Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1+2-3-4+5+6-7-8+9+10-.........+2010-2011-2012+2013+2014-2015-2016+2017
= 1+(2-3-4+5)+(6-7-8+9)+(10-11-12+13)+.......+(2014-2015-2016+2017)
= 1 + 0 + 0 + 0 + .........+ 0
= 1
Giả sử a là số nguyên tố chia 12 dư 9
=> a = 12k + 9 ( k \(\in\)N* )
= 3(4k + 3 ) chia hết cho 3
=> a chia hết cho 3. Mà a là số nguyên tố
=> a = 3
Mà 3 chia 12 dư 3
=> Điều giả sử trên là sai !
Vậy không có số nguyên tố nào chia 12 dư 9
Câu a) \(2^3\)chia 7 dư 1 \(\Rightarrow2^{48}=\left(2^3\right)^{16}\)chia 7 dư 1. Vậy \(2^{50}\)chia 7 dư 4.
Câu b) \(1532=1533-1\)chia 9 dư -1 \(\Rightarrow1532^5\)chia 9 dư \(\left(-1\right)^5=-1\)
Vậy \(1532^5-1\)chia 9 dư -2, tức là chia 9 dư 7.
Chúc bạn học tốt!
Mình làm nhanh nên gõ lộn ấy mà. Nói chung bạn cứ vận dụng kiến thức này là làm được
a chia b dư m thì \(a^n\)chia b dư \(m^n\).
Lúc đó bị gọi xuống ăn cơm nên hơi vội í bạn thông cảm nhé.
ta có :
a - 1 sẽ chia hết tất cả
a chia 5 dư 4 và chia 2 dư 1 , vậy tận cùng là 9 .
ta có thể áp dụng cách tìm BCNN vao bài này .
nếu các số đã cho từng đôi 1 là một đôi nguyên tố cùng nhau thì BCNN của chúng là tích của các số ấy :
1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 = 2519
nhé !
A dư 6 B dư 9