K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
6 tháng 2 2024

Lời giải:

$C=1+3^2+3^3+(3^4+3^5+3^6)+(3^7+3^8+3^9)+....+(3^{97}+3^{98}+3^{99})$

$=37+3^4(1+3+3^2)+3^7(1+3+3^2)+...+3^{97}(1+3+3^2)$

$=11+13.2+(1+3+3^2)(3^4+3^7+...+3^{97})$
$=11+13.2+13(3^4+3^7+...+3^{97})$

$=11+13(2+3^4+3^7+....+3^{97})$

$\Rightarrow C$ chia $13$ dư $11$.

10 tháng 1 2020

Gọi k là thương khi a chia cho 3
Ta có a=3k+2
=> a \in {5;8;11;14;...}
p là thương khi a chia cho 5.
Ta có a=5k+3
=> a \in { 8;13;18;23;...}
Vậy a là 8

6 tháng 1 2018

1) 

Ta thấy 99 là số lẻ, 20y là số chẵn với mọi y

=> Để 6x + 99 = 20y thì 6x là số lẻ

=> x = 0      

Thay x = 0 ta có 60 + 99 = 20y

                    =>   1  + 99 = 20y

                    =>    100     = 20y

                    => y  = 100 ; 20

                    => y =        5

Vậy x = 0, y = 5

16 tháng 3 2022

`Answer:`

2.

Ta có: \(M=1+3+3^2+3^3+3^4+...+3^{98}+3^{99}+3^{100}\)

\(=\left(1+3\right)+\left(3^2+3^3+3^4\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)

\(=4+3^2.\left(1+3+3^2\right)+...+3^{98}.\left(1+3+3^2\right)\)

\(=4+3^2.13+3^{98}.13\)

\(=4+13.\left(3^2+...+3^{98}\right)\)

Vậy `M` chia `13` dư `4`

Ta có: \(M=1+3+3^2+3^4+...+3^{99}+3^{100}\)

\(=1+\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)

\(=1+3.\left(1+3+3^2+3^3\right)+3^5.\left(1+3+3^2+3^3\right)+...+3^{97}.\left(1+3+3^2+3^3\right)\)

\(=1+3.40+3^5.40+...+3^{97}.40\)

\(=1+40.\left(3+3^5+...+3^{97}\right)\)

Mà ta thấy \(40.\left(3+3^5+...+3^{97}\right)⋮40\)

Vậy `M` chia `40` dư `1`

có đến nỗi ra quần không?

bằng 358

4 tháng 4 2016

sai rồi đó

11 tháng 12 2017

Ta có;

P=( 3+32 ) + ( 33+3)+....+ (399+3100)

P=1.(3+32 ) + 32.(3+32)+...+ 398. ( 3+32)

P=1.12 + 32.12 + ... + 398. 12

P=12.( 1+32+...+ 398) chia hết cho 12

11 tháng 12 2017

cảm ơn các bạn nhiều

29 tháng 10 2020

\(Y=1+3+3^2+3^3+.......+3^{98}\)

\(=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+.........+\left(3^{96}+3^{97}+3^{98}\right)\)

\(=\left(1+3+3^2\right)+3^3.\left(1+3+3^2\right)+......+3^{96}.\left(1+3+3^2\right)\)

\(=\left(1+3+9\right)+3^3.\left(1+3+9\right)+.........+3^{96}.\left(1+3+9\right)\)

\(=13+3^3.13+.......+3^{96}.13\)

\(=13.\left(1+3^3+.......+3^{96}\right)⋮13\)( đpcm )

29 tháng 10 2020

Y = 1 + 3 + 32 + 33 + ... + 398

= ( 1 + 3 + 32 ) + ( 33 + 34 + 35 ) + ... + ( 396 + 397 + 398 )

= 13 + 33( 1 + 3 + 32 ) + ... + 396( 1 + 3 + 32 )

= 13 + 33.13 + ... + 396.13

= 13( 1 + 33 + ... + 396 ) chia hết cho 13 ( đpcm )

23 tháng 11 2015

Gọi số cần tìm là a 

ta có a +1 chia hết cho 2;3;4;5;6

=> a+1 thuộc BC(2;3;4;5;6) ; BCNN(2;3;4;5;6) =60

=> a =60k -1 với k thuộc N*

a thuộc {59;119;179,,,,,}

a nhỏ nhất chia hết cho 7 => a =119