Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi k là thương khi a chia cho 3
Ta có a=3k+2
=> a {5;8;11;14;...}
p là thương khi a chia cho 5.
Ta có a=5k+3
=> a { 8;13;18;23;...}
Vậy a là 8
1)
Ta thấy 99 là số lẻ, 20y là số chẵn với mọi y
=> Để 6x + 99 = 20y thì 6x là số lẻ
=> x = 0
Thay x = 0 ta có 60 + 99 = 20y
=> 1 + 99 = 20y
=> 100 = 20y
=> y = 100 ; 20
=> y = 5
Vậy x = 0, y = 5
`Answer:`
2.
Ta có: \(M=1+3+3^2+3^3+3^4+...+3^{98}+3^{99}+3^{100}\)
\(=\left(1+3\right)+\left(3^2+3^3+3^4\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)
\(=4+3^2.\left(1+3+3^2\right)+...+3^{98}.\left(1+3+3^2\right)\)
\(=4+3^2.13+3^{98}.13\)
\(=4+13.\left(3^2+...+3^{98}\right)\)
Vậy `M` chia `13` dư `4`
Ta có: \(M=1+3+3^2+3^4+...+3^{99}+3^{100}\)
\(=1+\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)
\(=1+3.\left(1+3+3^2+3^3\right)+3^5.\left(1+3+3^2+3^3\right)+...+3^{97}.\left(1+3+3^2+3^3\right)\)
\(=1+3.40+3^5.40+...+3^{97}.40\)
\(=1+40.\left(3+3^5+...+3^{97}\right)\)
Mà ta thấy \(40.\left(3+3^5+...+3^{97}\right)⋮40\)
Vậy `M` chia `40` dư `1`
Ta có;
P=( 3+32 ) + ( 33+34 )+....+ (399+3100)
P=1.(3+32 ) + 32.(3+32)+...+ 398. ( 3+32)
P=1.12 + 32.12 + ... + 398. 12
P=12.( 1+32+...+ 398) chia hết cho 12
\(A=\frac{\left[\left(25-1\right):1+1\right]\left(25+1\right)}{2}=325.\)
\(B=\frac{\left[\left(51-3\right):2+1\right]\left(51+3\right)}{2}=675\)
\(C=\frac{\left[\left(81-1\right):4+1\right]\left(81+1\right)}{2}=861\)
\(Y=1+3+3^2+3^3+.......+3^{98}\)
\(=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+.........+\left(3^{96}+3^{97}+3^{98}\right)\)
\(=\left(1+3+3^2\right)+3^3.\left(1+3+3^2\right)+......+3^{96}.\left(1+3+3^2\right)\)
\(=\left(1+3+9\right)+3^3.\left(1+3+9\right)+.........+3^{96}.\left(1+3+9\right)\)
\(=13+3^3.13+.......+3^{96}.13\)
\(=13.\left(1+3^3+.......+3^{96}\right)⋮13\)( đpcm )
Y = 1 + 3 + 32 + 33 + ... + 398
= ( 1 + 3 + 32 ) + ( 33 + 34 + 35 ) + ... + ( 396 + 397 + 398 )
= 13 + 33( 1 + 3 + 32 ) + ... + 396( 1 + 3 + 32 )
= 13 + 33.13 + ... + 396.13
= 13( 1 + 33 + ... + 396 ) chia hết cho 13 ( đpcm )
Lời giải:
$C=1+3^2+3^3+(3^4+3^5+3^6)+(3^7+3^8+3^9)+....+(3^{97}+3^{98}+3^{99})$
$=37+3^4(1+3+3^2)+3^7(1+3+3^2)+...+3^{97}(1+3+3^2)$
$=11+13.2+(1+3+3^2)(3^4+3^7+...+3^{97})$
$=11+13.2+13(3^4+3^7+...+3^{97})$
$=11+13(2+3^4+3^7+....+3^{97})$
$\Rightarrow C$ chia $13$ dư $11$.