K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
19 tháng 9 2021

ta chú ý :

\(15^7\text{ chia 49 dư 1}\)

mà \(15^{15}=\left(14+1\right)^{15}\text{ chia 7 dư 1 nên :}15^{15}=7k+1\)

nên : \(15^{15^{15}}=15^{7k+1}=15\times15^{7k}\text{ chia 49 dư 15}\)

13 tháng 7 2019

Ta có hpt:\(\left\{{}\begin{matrix}a+b+c=-16\\4a+2b+c=-23\\9a+3b+c=-36\end{matrix}\right.\)

\(\Rightarrow a=-3;b=2;c=-15\). Vậy Q(x)=\(x^3-3x^2+2x-15\)

Theo đlí Bezu số dư Q(x) cho (x-4)=f(4)=\(4^3-3.4^2+2.4-15=9\)

còn 2 bài nữa bạn giải giúp mk luôn dc ko

23 tháng 11 2016

Ta có: x50 + x49 + ... + 1 có 51 số hạng. 

x16 + x15 + ... + 1 có 17 số hạn nên ta chia nhóm trên thành 3 nhóm mỗi nhóm 17 số hạn như sau.

x50 + x49 + ... + 1 = (x50 + x49 +...+x34) + (x33 + x32 +...+x17) + (x16 + x15 +...+1)

= x34(x16 + x15​ +...+1) + x17(x16 + x15​ +...+1) + (x16 + x15​ +...+1)

= (x16 + x15​ +...+1)(x34 + x17 + 1)

Tích này chia hết cho (x16 + x15​ +...+1)

Nên x50 + x49 + ... + 1 chia hết cho (x16 + x15​ +...+1)

23 tháng 11 2016

Bai nay de nhung mk ko biet nha

Nho k cho minh nha

chuc cac ban hac gioi

16 tháng 11 2017

Ta có: 3444444444:31 dư 3

=> 28 số 3444444444 chia cho 31 sẽ dư 28*3=84,

Mà 84 chia 31 dư 22

=> 344444444428:31 dư 22

16 tháng 11 2017

34444444440^28 chia cho 31 sẽ dư 3^28 chứ b

24 tháng 10 2020

Ta có : 21000 = (22)500 = 4500

4500 có tận cùng bằng 6

=> 4500 : 5 dư 1

=> 21000 : 5 dư 1

4 tháng 12 2017

ta có : 2018p \(\equiv\)2p (mod 3) 

Vì là SNT > 5 => p lẻ

=> 2p \(\equiv\)2 (mod 3)

2017q \(\equiv\)1 (mod 3)

=> 2018p - 2017q \(\equiv\)2 - 1 = 1 (mod 3)

Vậy 2018p - 2017q chia 3 dư 1

b) xét số dư khi chia p cho 3 => p có 2 dạng 3k + 1 hoặc 3k + 2

+ p = 3k + 1 => 3p5 \(⋮\)3 ; 5p3 \(\equiv\)2 (mod 3) ; 7p \(\equiv\)1 (mod 3) => (3p5 + 5p3 + 7p ) \(⋮\)3

+ p = 3k + 1 => 3p5 \(⋮\)3 ; 5p3 \(\equiv\)1(mod 3) ; 7p \(\equiv\)2 (mod 3) => (3p5 + 5p3 + 7p ) \(⋮\)3

Vậy 3p5 + 5p3 + 7p \(⋮\)3 (1)

Xét số dư khi chia p cho 5 => p có 4 dạng 5k+1;5k+2;5k+3;5k+4

+ p = 5k + 1 => 3p5 \(\equiv\)3 (mod 5) ; 5p3 \(⋮\) 5 ; 7p\(\equiv\)7 (mod 5) =>(3p5 + 5p3 + 7p ) \(⋮\)5

 + p = 5k + 2 => 3p5 \(\equiv\)1 (mod 5) ; 5p3 \(⋮\) 5 ; 7p\(\equiv\)4 (mod 5) =>(3p5 + 5p3 + 7p ) \(⋮\)5                                                                                                    

+ p = 5k + 3 => 3p5 \(\equiv\)4 (mod 5) ; 5p3 \(⋮\) 5 ; 7p\(\equiv\)1 (mod 5) =>(3p5 + 5p3 + 7p ) \(⋮\)5

+ p = 5k + 4 => 3p5 \(\equiv\) 2(mod 5) ; 5p3 \(⋮\) 5 ; 7p\(\equiv\)3 (mod 5) =>(3p5 + 5p3 + 7p ) \(⋮\)5

Vậy 3p5 + 5p3 + 7p \(⋮\)5 (2)

Từ (1) và (2) và (3;5) = 1 =>  3p5 + 5p3 + 7p \(⋮\)15 

=> \(\frac{3p^5+5p^3+7b}{15}\)là số nguyên (đpcm)

AH
Akai Haruma
Giáo viên
31 tháng 12 2016

Ta có: \(k(x)=x^{2012}+x^{2013}+15=(x^{2012}-1)+x(x^{2012}-1)+x+16\)

Hiển nhiên $x^{2012}-1$ chia hết cho $x^2-1$. Mà $x+16$ lại có bậc nhỏ hơn $x^2-1$ nên suy ra $k(x)$ chia cho $x^2-1$ có dư là $x+16$