Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gt<=>5(100a+10b+c)=(100a+10a+a+10a+a)+(b+100b+100b+b+10b)+(10c+c+10c+100c+100c)<=>500a+50b+5c=122a+212b
+221c<=>378a=162b+216c<=>7a=3b+4c
gọi 3 số phải tìm là a, b, c giả sử a > b > c (a, b, c khác 0)
vì a> b> c nên 2 số lớn nhất là: abc và acb
có abc + acb = 1444
a x 200 + 11 (b + c)= 1444
a < 8 vì 8 x 200 = 1600 > 1444
với a = 7 có
7 x 200 + 11 (b + c) = 1444
11 (b +c )= 44
b + c = 4
vì b và c là hai chữ số khác nhau và khác 0 nên b = 3, c= 1
các chữ số phải tìm là 7, 3, 1
các trường hợp a < 7 thì có 1444 - a x 200 không chia hết cho 11
Vậy các số phải tìm là 1, 3, 7
gọi 3 số phải tìm là a, b, c giả sử a > b > c (a, b, c khác 0)
vì a> b> c nên 2 số lớn nhất là: abc và acb
có abc + acb = 1444
a x 200 + 11 (b + c)= 1444
a < 8 vì 8 x 200 = 1600 > 1444
với a = 7 có
7 x 200 + 11 (b + c) = 1444
11 (b +c )= 44
b + c = 4
vì b và c là hai chữ số khác nhau và khác 0 nên b = 3, c= 1
các chữ số phải tìm là 7, 3, 1
các trường hợp a < 7 thì có 1444 - a x 200 không chia hết cho 11
Vậy các số phải tìm là 1, 3, 7
Ta có \(\overline{abc}=\overline{bac}+\overline{cab}\) nên \(a>b,a>c\)
Và \(100a+10b+c=100b+10a+c+100c+10a+b\)
\(\Leftrightarrow80a=91b+100c\)
Do \(80a⋮4;100c⋮4\Rightarrow91b⋮4\Rightarrow b⋮4\)
Vậy \(b\in\left\{4;8\right\}\)
Với b = 4, ta có \(80a=364+100c\Leftrightarrow20a=91+25b\)
Vô lý vì \(20a⋮5\) nhưng \(91+25b⋮̸5\)
Với b = 8, ta có \(80a=91.8+100c\Rightarrow20a=182+25c\)
Vô lý vì \(20a⋮5\) nhưng \(182+25b⋮̸5\)
Vậy không có số nào thỏa mãn điều kiện trên.