Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(3n+2):(n-1) = 3 + 5/(n-1)
a)Để 3n+2 chia hêt cho n-1
thì n-1 phải là ước của 5
do đó:
n-1 = 1 => n = 2
n-1 = -1 => n = 0
n-1 = 5 => n = 6
n-1 = -5 => n = -4
Vậy n = {-4; 0; 2; 6}
thì 3n+2 chia hêt cho n-1.
c)3n+2 chia hết cho 2n-1
6n-3n+2 chia hết cho 2n-1
3(2n-1)+2 chia hết cho 2n-1
=>2 chia hết cho 2n-1 hay 2n-1 thuộc Ư(2)={1;-1;2;-2}
=>2n thuộc{2;0;3;-1}
=>n thuộc{1;0}
Ta có : \(4n+5⋮5\)
\(\Leftrightarrow4n⋮5\)
\(\Leftrightarrow n⋮5\)
\(\Rightarrow n\inℕ\left(ĐK:n\in B_{\left(5\right)}\right)\)
\(b,3n+4⋮n-1\)
Ta có : \(\frac{3n+4}{n-1}=\frac{3n-3+7}{n-1}=\frac{3(n-1)+7}{n-1}=3+\frac{7}{n-1}\)
Do đó : \(7⋮n-1\)=> \(n-1\inƯ(7)\)
=> \(n-1\in\left\{1;7\right\}\)
=> \(n\in\left\{2;8\right\}\)
=>2(3n-1) chia hết cho 2n+1
=>(6n+3)-3-2 chia hết cho 2n+1
=>3(2n+1)-5 chia hết cho 2n+1
Mà 3(2n+1) chia hết cho 2n+1
=>5 chia hết cho 2n+1
=>2n+1 thuộc Ư(5)={1;5;-1;-5}
=>2n thuộc {0;4;-2;-6}
=> n thuộc {0;2;-1;-3}
(3n+2):(n-1) = 3 + 5/(n-1)
Để 3n+2 chia hêt cho n-1
thì n-1 phải là ước của 5
do đó:
n-1 = 1 => n = 2
n-1 = -1 => n = 0
n-1 = 5 => n = 6
n-1 = -5 => n = -4
Vậy n = {-4; 0; 2; 6}
thì 3n+2 chia hêt cho n-1.
n="1" Ta thay n=1 thì 1+1/3*1-2
1+1=2 (1)
3*1-2=1
1+1/3*1-2=2/1=2
a; (2n + 1) ⋮ (6 -n)
[-2.(6 - n) + 13] ⋮ (6 - n)
13 ⋮ (6 - n)
(6 - n) ϵ Ư(13) = {-13; -1; 1; 13}
Lập bảng ta có:
6 - n | -13 | -1 | 1 | 13 |
n | 19 | 7 | 5 | -7 |
n ϵ Z | tm | tm | tm | tm |
Theo bảng trên ta có: n ϵ {19; 7; 5; -7}
Vậy các giá trị nguyên của n thỏa mãn đề bài là:
n ϵ {19; 7; 5; -7}
b; 3n ⋮ (5 - 2n)
6n ⋮ (5 - 2n)
[15 - 3(5 - 2n)] ⋮ (5 - 2n)
15 ⋮ (5 -2n)
(5 - 2n) ϵ Ư(15) = {-15; -1; 1; 15}
Lập bảng ta có:
5 - 2n | -15 | -1 | 1 | 15 |
n | 10 | 3 | 2 | -5 |
n ϵ Z | tm | tm | tm | tm |
Theo bảng trên ta có: n ϵ {10; 3; 2; -5}
Vậy các giá trị nguyên n thỏa mãn đề bài là:
n ϵ {-5; 2; 3; 10}
I don't now
...............
.................
a) ta có: n -6 chia hết cho n - 2
=> n - 2 - 4 chia hết cho n - 2
mà n - 2 chia hết cho n - 2
=> 4 chia hết cho n - 2
=> n - 2 thuộc Ư(4)={1;-1;2;-2;4;-4}
...
rùi bn tự xét giá trị để tìm n nha
câu b;c ;ebn làm tương tự như câu a nha
d) ta có: 3n -1 chia hết cho 11 - 2n
=> 2.(3n-1) chia hết cho 11 - 2n
6n - 2 chia hết cho 11 - 2n
=> -2 + 6n chia hết cho 11 - 2n
=> 31 - 33 + 6n chia hết cho 11 - 2n
=> 31 - 3.(11-2n) chia hết cho 11 - 2n
mà 3.(11-2n) chia hết cho 11 - 2n
=> 31 chia hết cho 11 - 2n
=> 11 - 2n thuộc Ư(31)={1;-1;31;-31)
...
Lưu ý là lớp 6 không cần thiết phải viết dấu "=>".
a. Với số tự nhiên n.
Ta có: \(3n+15⋮n+4\) và \(3\left(n+4\right)⋮n+4\)
=> \(\left(3n+15\right)-3\left(n+4\right)⋮n+4\)
=> \(3n+15-3n-12⋮n+4\)
=> \(\left(3n-3n\right)+\left(15-12\right)⋮n+4\)
=> \(3⋮n+4\)
=> \(n+4\in\left\{1;3\right\}\)
+) Với n + 4 = 1 vô lí vì n là số tự nhiên.
+) Với n + 4 = 3 vô lí vì n là số tự nhiên
Vậy không có n thỏa mãn.
b) Với số tự nhiên n.
Có: \(\left(4n+20\right)⋮\left(2n+5\right)\) và \(2\left(2n+5\right)⋮\left(2n+5\right)\)
=> \(\left(4n+20\right)-2\left(2n+5\right)⋮2n+5\)
=> \(4n+20-4n-10⋮2n+5\)
=> \(\left(4n-4n\right)+\left(20-10\right)⋮2n+5\)
=> \(10⋮2n+5\)
=> \(2n+5\in\left\{1;2;5;10\right\}\)
+) Với 2n + 5 = 1 loại
+) với 2n + 5 = 2 loại
+) Với 2n + 5 =5
2n = 5-5
2n = 0
n = 0 Thử lại thỏa mãn
+ Với 2n + 5 = 10
2n = 10 -5
2n = 5
n = 5/2 loại vì n là số tự nhiên.
Vậy n = 0.
a, n - 1 chia hết cho n - 1 => 3 ( n -1 ) chia hết cho n - 1 => 3n - 3 chia hết cho n - 1
Mà 3n + 2 = 3n - 3 + 5 Vì 3n - 3 chia hết cho n - 1 => 5 chia hết cho n - 1
=> n - 1 thuộc 1 và 5 => n thuộc 2 và 6
b, Tương tự
c, \(\hept{\begin{cases}n^2+5⋮n+1\\n+1⋮n+1\end{cases}}\Rightarrow\hept{\begin{cases}n^2+5⋮n+1\\n^2+n⋮n+1\end{cases}}\Rightarrow5-n⋮n+1\)
\(\hept{\begin{cases}5-n⋮n+1\\n+1⋮n+1\end{cases}}\Rightarrow5-n+n+1⋮n+1\)
\(\Rightarrow6⋮n+1\Rightarrow n+1\inƯ\left(6\right)\Rightarrow n+1\in\left\{1;2;3;6\right\}\Rightarrow n\in\left\{0;1;2;5\right\}\)
a) Ta có : 3n + 2 chia hết cho n - 1
=> 3n + 2 - 3.( n - 1) chia hết cho n - 1
=> 3n + 2 - ( 3n - 3 ) chia hết cho n - 1
=> 3n + 2 - 3n + 3 chia hết cho n - 1
=> 5 chia hết cho n -1
=> n -1 thuộc Ư(5) = { 1 ; - 1 ; 5 ; -5}
Ta có bảng ;
n-1 | 1 | -1 | 5 | -5 |
n | 2 | 0 | 6 | -6 |
Vậy n thuộc { 2;0;6;-6}
b) Ta có : 3n + 24 chia hết cho n -4
=> 3n + 24 - 3.(n-4) chia hết cho n -4
=> 3n + 24 - (3n - 12 ) chia hết cho n -4
=> 3n + 24 - 3n + 12 chia hết cho n -4
=> 36 chia hết cho n -4
=> n - 4 thuộc Ư(36) ( bạn tự làm nhé)
c) Tương tự nhé
3n ⋮ n - 1 <=> 3(n - 1) + 3 ⋮ n - 1
<=> 3 ⋮ n - 1 (vì 3(n - 1) ⋮ n - 1)
<=> n - 1 ∈ Ư(3)
Vì n ∈ Z => n - 1 ∈ Z
=> n - 1 ∈ Ư(3) = {1; -1; 3; -3}
n - 1 = 1 => n = 2
n - 1 = -1 => n = 0
n - 1 = 3 => n = 4
n - 1 = -3 => n = -2
Vậy n ∈ {2; 0; 4; -2}
3n \(⋮\)n - 1
Ta có :
3n = 3 . ( n - 1 ) + 3
=> 3n \(⋮\)n - 1 khi 3 . ( n - 1 ) + 3 \(⋮\)n - 1
=> 3 . ( n - 1 ) + 3 \(⋮\)n - 1
=> 3 \(⋮\)n - 1
=> n - 1 \(\in\)Ư ( 3 ) = { 1 ; -1 ; 3 ; -3 }
Với n - 1 = 1 => n = 2
Với n - 1 = -1 => n = 0
Với n - 1 = 3 => n = 4
Với n - 1 = -3 => n = -2
Vậy : n \(\in\){ 2 ; 0 ; 4 ; -2 }