Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để phân số n+3/2n-2 có giá trị nguyên thì:
n+3 chia hết cho 2n-2
=>2n+6 chia hết cho 2n-2
=>2n-2+8 chia hết cho 2n-2
=>8 chia hết cho 2n-2
=>2n-2 thuộc Ư(8)={1;-1;2;-2;4;-4;8;-8}
=>n=3/2;1/2;2;0;3;-1;5;-3
Mà n thuộc N nên: n=0;2;3;5
Để phân số n+3/2n-2 có giá trị nguyên thì:
n+3 chia hết cho 2n-2
=>2n+6 chia hết cho 2n-2
=>2n-2+8 chia hết cho 2n-2
=>8 chia hết cho 2n-2
=>2n-2 thuộc Ư(8)={1;-1;2;-2;4;-4;8;-8}
=>n=3/2;1/2;2;0;3;-1;5;-3
Mà n thuộc N nên: n=0;2;3;5
Đặt ưcln(n+3,n+4)=d(d€N*)
=>{n+3,n+4 chia hếtcho d
=>{4n+12,3n+12 chia hết cho d
=>4n+12-(3n+12)chia hết cho d
=>4n+12-3n-12 chia hết cho d
=>1chia hết cho d
=>d€ Ư(1)={ +-1}
Vậy n+3,n+4 nguyên tố cùng nhau
b) Gọi d là ƯC ( 2n + 3 ; 6n + 8 )
=> ( 2n + 3 ) \(⋮\)d và ( 6n +8 ) \(⋮\)d
=> 3 ( 2n + 9 ) \(⋮\)d và ( 6n +8 ) \(⋮\)d
=> [ ( 6n + 9 ) - ( 6n + 8 ) ] \(⋮\)d
=> 1 \(⋮\) d ; d \(\in\) N*
=> d = 1
Vậy ƯCLN ( 2n + 3 ; 6 n+ 8 ) = 1 => \(\frac{2n+3}{6n+8}\) là phân số tối giản.
\(\frac{n+3}{n-2}=\frac{n-2}{n-2}+\frac{5}{n-2}=1+\frac{5}{n-2}\)
Để n+3/n-2 là số nguyên thì: n-2 thuộc Ư(5)={1;-1;5;-5}
=>n=3;1;7;-3
Với n=3 => n+3/n-2 nguyên dương
n=1 => n+3/n-2 nguyên âm
n=7 =>n+3/n-2 nguyên dương
n=-3 =>n+3/n-2 nguyên âm
Vậy n=3;7
Theo đề bài ta có :
A = \(\frac{n=10}{2n-8}\)
=> 10n + 2 chia hết 2n - 8
=> 10n + 2 chia hết n - 4
=> n - 4 + 14 chia hết n - 4
=> 14 chia hết n - 4
Ta có n - 4 thuộc Ư( 14 ) = ( 1 ; 2 ; 7 ; 14 )
=> n thuộc ( 5 ; 7 ; 11 ; 18 )
Để \(\frac{n+10}{2n-8}\) có giá trị nguyên thì: n+10 chia hết cho 2n-8
=>2n+20 chia hết cho 2n-8
=>2n-8+28 chia hết cho 2n-8
=>14 chia hết cho n-4
=>n-4 thuộc Ư(14)={1;-1;2;-2;7;-7;14;-14}
=>n=5;3;6;2;11;-3;18;-10
Mà n là số tự nhiên nên: n=5;3;6;2;11;18
nhiều bài quá mình chỉ làm được bài 1,3,4,5
bài 2 mình đang suy nghĩ
bạn có thể vào để hỏi bài !
\(P=\frac{-n+2}{n-1}=\frac{-n+1+1}{n-1}=\frac{-\left(n-1\right)}{n-1}+\frac{1}{n-1}=-1+\frac{1}{n-1}\)
Do đó, để P có giá trị nguyên thì 1 phải chia hết cho n-1
=> (n-1)EƯ(1)={1;-1}
=>nE{2;0}
Vậy để P nguyên thì nE{0;2}
A=\(\frac{4n+3}{2n+1}\) B=\(\frac{6n+2}{n+1}\)
tìm các số tự nhiên n để các phân số trên là tối giản
\(\frac{10n+13}{2n+1}=\frac{10n+12+1}{2n+1}=\frac{\left(10n+1\right)+12}{2n+1}=\frac{12}{2n+1}\)
=> 2n+1 \(\in\)Ư(12) = {\(\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\)}
Ta có bảng :
2n+1 | n |
-1 | -1 |
1 | 0 |
-2 | ko thoả mãn |
2 | ko thoả mãn |
3 | 1 |
-4 | ko thoả mãn |
4 | ko thoả mãn |
-6 | ko thoả mãn |
6 | ko thoả mãn |
-12 | ko thoả mãn |
12 | ko thoả mãn |
-3 | -2 |
tự đáp số
bạn tách ra, để đc phân số 2n-4/n-2 và có kết quả là 2, còn 5/n-2 thì phải có giá trị nguyên thì phân số kia mới nguyên đc, từ đó bạn lập ra các trường hợp là đc, có j ko hiểu nt lại cho mk