Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số đó là abcd ( coi như có dấu gạch trên đầu; nếu là phép nhân mình sẽ ghi dấu .)
Ta có:
dcba = 4.abcd
=> dcba chia hết cho 4 => a là chữ số chẵn
Ta thấy a đương nhiên khác 0; và nếu a ≥ 4 thì 4.abcd ≥ 4.4000 > 9999 ≥ dcba
Do vậy a = 2
=> dcba = 4.abcd ≥ 4.2000 = 8000 => d=8 hoặc d=9
Tuy nhiên do dcba = 4.abcd nên 4.d phải tận cùng bằng chữ số a.
Ta thấy: 4.8 = 32 ; 4.9 = 36
Vậy d = 8
Ta lại có: dcba = 100.dc +ba = 4.25.dc +ba chia hết cho 4
nên ba chia hết cho 4
Do a =2 nên b chỉ có thể = 1;3;5;7;9
Tuy nhiên nếu b ≥ 3 thì
8cba = 4.2bcd ≥ 4.2300 = 9200 (vô lý)
Vậy b = 1
Bây giờ ta có: 8c12 = 4.21c8
<=> 8012 +100.c = 4.2108 +4.10.c
<=> 60.c = 420
<=> c = 7
Vậy số cần tìm là: 2178
Số cần tìm là (ab7) = 100a + 10b + 7
Số mới là (7ab) = 700 + 10a + b
Ta có 700 + 10a + b = 2(100a + 10b + 7) + 21
<=> 10a + b + 700 = 200a + 20b + 35
<=> 190a + 19b = 665 <=> 10a + b = 35 <=> a = 3; b = 5
---> Số cần tìm là 357.
Số cần tìm là (ab7) = 100a + 10b + 7
Số mới là (7ab) = 700 + 10a + b
Ta có 700 + 10a + b = 2(100a + 10b + 7) + 21
<=> 10a + b + 700 = 200a + 20b + 35
<=> 190a + 19b = 665 <=> 10a + b = 35 <=> a = 3; b = 5 ---> Số cần tìm là 357.
Gọi số cần tìm là ab7
Ta có:
2.ab7+21=7ab
2.(100a+10b+7)+21=700+10a+b
200a+20b+14+21=700+10a+b
190a+19b=700-14-21=665
19(10a+b)=665
ab=665:19=35
Vậy số cần tìm là 357
2.Số cần tìm là (ab7) = 100a + 10b + 7
Số mới là (7ab) = 700 + 10a + b
Ta có 700 + 10a + b = 2(100a + 10b + 7) + 21
<=> 10a + b + 700 = 200a + 20b + 35
<=> 190a + 19b = 665 <=> 10a + b = 35 <=> a = 3; b = 5
---> Số cần tìm là 357.
goị số cần tìm là abc->số đó viết theo thứ tự ngược lại là: cba
abc =cba +594 -> abc >594 -> a>5
chữ số hàng trăm gấp 4 lần chữ số hàng đơn vị -> a=4.c =>a phải chia hết cho 4 ->a=8 -> c=8:4=2
abc=8b2 ; cba=2b8
=> 8b2=2b8+594
802+bx10 =208 +bx10 +594
802+bx10=802+bx10 luôn đúng -> b=0;1;2;.....;9
vậy các số cần tìm là: 802;812;822;832;842;852;862;872;882;892
goị số cần tìm là abc->số đó viết theo thứ tự ngược lại là: cba
abc =cba +594 -> abc >594 -> a>5
chữ số hàng trăm gấp 4 lần chữ số hàng đơn vị -> a=4.c =>a phải chia hết cho 4 ->a=8 -> c=8:4=2
abc=8b2 ; cba=2b8
=> 8b2=2b8+594
802+bx10 =208 +bx10 +594
802+bx10=802+bx10 luôn đúng -> b=0;1;2;.....;9
vậy các số cần tìm là: 802;812;822;832;842;852;862;872;882;892
Gọi số tự nhiên có 3 chữ số là ab7
Vì nếu chuyển số chữ số 7 ở hàng đơn vị lên vị trí đầu tiên giữ nguyên các vị trí các số còn lại ta được số mới gấp 2 lần số cũ và cộng thêm 21 đơn vị.
Do đó ta đc:7ab = 2 ( ab7 ) + 21
\(\Leftrightarrow700+10a+b=2\left(100a+10b+7\right)+21\)
\(\Leftrightarrow700+10a+b=200a+20b+14+21\)
\(\Leftrightarrow700+10a+b-200a-20b-35=0\)
\(\Leftrightarrow665-190a-19b=0\)
\(\Leftrightarrow19\left(10a+b\right)=665\)
Vì 10a + b tương đương với ab
Do đó ta đc:ab = 35
Vậy số tự nhiên đó là 357
Gọi số cần tìm là ab7
=> 7ab = 2.ab7 + 21
=> 700 + ab = 20.ab + 14 + 21 => ab = 35