Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
= \(\left(m^2+4m+3\right)\left(m^2+4m+3+32m+320\right)+35^3=\)\(\left(m^2+4m+3\right)^2+32\left(m+10\right)\left(m^2+4m+3\right)+35^3=\)\(\left(m^2+4m+3\right)^2+2.\left(16m+160\right)\left(m^2+4m+3\right)+\left(16m+160\right)^2-\)\(\left(16m+160\right)^2+35^3=\)
\(\left(m^2+4m+3+16m+160\right)^2-\left(16m+160\right)^2+35^3=\)
\(\left(m^2+20m+163\right)^2-16^2\left(m+10\right)^2+35^3=\)\(\left[\left(m+10\right)^2+63\right]^2-256\left(m+10\right)^2+35^3.\)(1)
Đặt (m+10)2 = a( m thuộc N lên a \(\ge10^2=100\))
(1) <=> (a+63)2 -256a + 353 = a2 -130a +632+353 = (a-65)2 + 42619 = K2 (K \(\in N\))
<=> K2- (a-65)2 =42619 <=> (K-a+65)(K+a-65) = 17.23.109
Với a\(\ge10=>K+a-65>K-a+65\)
=> \(\hept{\begin{cases}K+a-65=17.23.109\\K-a+65=1\end{cases};\hept{\begin{cases}K+a-65=23.109\\K-a+65=17\end{cases};\hept{\begin{cases}K+a-65=17.109\\K-a+65=23\end{cases}}}};\)\(\hept{\begin{cases}K+a-65=17.23\\K-a+65=109\end{cases}}\)
giải \(\hept{\begin{cases}K+a-65=17.23.109\\K-a+65=1\end{cases}}\)trừ vế theo vế ta được 2a -2.65=42618 <=> a = 21374 = (m+10)2
dễ thấy 21374 chia hết cho 2 nhưng không chia hết cho 4 nên 21374 không phải là số chính phương => không có m thỏa mãn
giải tương tự các hệ phương trình còn lại ta cũng không tìm được m thỏa mãn
Vậy không có m thỏa mãn.
(có ai giải khác chỉ mình với)
b) Giải:
Đặt \(A=n^3+3n^2-n-3\) ta có
\(A=n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)\)
\(=\left(n^2-1\right)\left(n+3\right)=\left(n+1\right)\left(n-1\right)\left(n+3\right)\)
Thay \(n=2k+1\left(k\in Z\right)\) ta được:
\(A=\left(2k+2\right)2k\left(2k+4\right)=\) \(2\left(k+1\right).2k.2\left(k+2\right)\)
\(=8\left(k+1\right)k\left(k+2\right)\)
Mà \(\left(k+1\right)k\left(k+2\right)\) là tích của \(3\) số tự nhiên nhiên tiếp nên chia hết cho \(6\) \(\Rightarrow A⋮8.6=48\)
Vậy \(n^3+3n^2-n-3\) \(⋮48\forall x\in Z;x\) lẻ (Đpcm)
a: 4m+7n=0 nên 7n=-4m
\(f\left(x\right)=mx^2-4m\)
TH1: m=0
=>f(x)=0 luôn có nghiệm
TH2: m<>0
=>f(x)=m(x2-4) có nghiệm là x=2 hoặc x=-2
=>f(x) luôn có nghiệm
b: \(f\left(x\right)=m^2\left(x^3-8\right)-2mx\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+2x+4\right)\cdot\left(m^2-2mx\right)\)
=>f(x) luôn có nghiệm
3-1.3n+4.3n=13.35
=> 3n(3-1+4+=13.35
=> 3n\(\left(\dfrac{1}{3}+4\right)\)=13.35
=> 3n\(\dfrac{13}{3}\) = 13.35
=> 3n=13.35:\(\dfrac{13}{3}\)
=> 3n=13.35.\(\dfrac{3}{13}\)
=> 3n=36
=> n=6
vậy n=6
a) M=\(8y^5-3y+1\)
N=\(-y^5+11y^3-2y\)
b) N+M=\(\left(8y^5-3y+1\right)\)+ \(\left(-y^5+11y^3-2y\right)\)
N+M= \(7y^5\)\(+11y^3\)\(-5y\)\(+1\)
M-N=\(\left(8y^5-3y+1\right)\) \(-\)\(\left(-y^5+11y^3-2y\right)\)
M-N=\(9y^5\)\(-11y^3\)\(-y\)\(+1\)
N-M=\(\left(-y^5+11y^3-2y\right)\) \(-\) \(\left(8y^5-3y+1\right)\)
N-M=\(-9y^5\)\(+11y^3\)\(+y\)\(-1\)
có bậc là 3 => ( \(^{m^2}\)- 25 ) \(^{x^4}\)= 0
hay ( \(m^2\)- 25 ) = 0 => \(m^2\)= 25
=> m = 5
Để f(x) là đa thức bậc 3 thì
\(\hept{\begin{cases}m^2-25=0\\20+4m\ne0\end{cases}}\Rightarrow\hept{\begin{cases}m=\pm5\\m\ne-5\end{cases}\Rightarrow}m=5\)
Vậy m = 5