K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
9 tháng 7 2024

Lời giải:

$\overline{aabb}=1100a+11b=11(100a+b)=11.\overline{a0b}$

Để $\overline{aabb}$ là scp thì $\overline{a0b}=11k^2$ với $k$ tự nhiên.

Mà $\overline{a0b}$ là số có 3 chữ số nên:

$100\leq 11k^2\leq 999$

$\Rightarrow 3,05\leq k\leq 9,5$

$\Rightarrow k\in \left\{4; 5; 6; 7; 8; 9\right\}$

Thử lại ta thấy $k=8$ là TH duy nhất thỏa mãn.

$\overline{a0b}=11.8^2=704$

$\Rightarrow a=7; b=4$

 

19 tháng 1 2018

gọi aabb =n^2

có 1000a+100a+10b+b=n^2

1100a+11b=n^2

11(100a=b)=n^2

=> n^2 chia hết cho 11 

vậy n chia hết cho 11

mà 32<n<100(vì n^2 có 4 chữ số nên n có 2 chữ số)

vậy n=33;44;55;66;77;88;99

thử vào thì thấy 88 là hợp lý 

=> n=88  

có 88^2=7744

vậy a=7 và b =4 để aabb là số chính phương

cho mình 3 điểm thành tích nha 

3 tháng 10 2015

Ta có 7744 = 882

Vậy a = 7 và b = 4

3 tháng 10 2015

7744=882 . Cho nên  kết  quả  như  vậy 

16 tháng 6 2018

10 \(\le\)\(\le\)99 => 21 < 2n + 1 < 199 và 31 < 3n + 1 < 298

Vì 2n + 1 là số lẻ mà 2n + 1 là số chính phương

=> 2n + 1 thuộc { 25 ; 49  ; 81 ; 121 ;  169 } tương ứng số n thuộc { 12; 24; 40; 60; 84 } ( 1 )

Vì 3n + 1 là số chính phương và 31 < 3n + 1 < 298

=> 3n + 1 thuộc { 49 ; 64 ; 100 ; 121 ; 169 ; 196 ; 256 ; 289 } tương ứng n thuộc { 16 ; 21 ; 33 ; 40 ; 56 ; 65 ; 85 ; 96 } ( 2 )

Từ 1 và 2 => n = 40 thì 2n + 1 và 3n + 1 đều là số chính phương

29 tháng 11 2018

bài cô giao đi hỏi 

10 tháng 7 2016

Tìm stn k khác 0 , nhỏ nhất sao cho tổng của 19 stn liên tiếp k + 1, k+ 2,..., k+ 19 là 1 số chính phương

26 tháng 8 2020

aabb=7744=882

3 tháng 6 2022

ko tận cùng là 2;3;7;8
ko tận cùng là 1 vì 11 chia 4 dư 3
ko tận cùng là 5 vì chia 55 chia 4 dư 3
ko tận cùng là 6 vì 66 chia 4 dư 2
ko tận cùng là 9 vì 99 chia 4 dư 3
vậy số có dạng là a000,a444
với số có dạng là a000 thì a chỉ có thể là 1;3;4;6;7;9
với số có dạng là a444 thì a chỉ có thể là 1;3;4;6;7;9
thử đi, có 6TH thôi=))

3 tháng 6 2022

2. a và b đồng dư 0;1 mod 4
nên a-b đồng dư 0;1;3 mod 4
mà 2014 đồng dư 2 mod 4
nên ko tồn tại a;b