K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2017

Sorry nhá mk nhầm dấu + nên kq sai : 

Ta có : (x + 3)(x - 11) + 2003

= x2 - 8x + 1970

= x2 - 8x + 16 + 1954

= (x - 4)2 + 1954

Mà (x - 4)2 \(\ge0\forall x\)

Nên : (x - 4)2 + 1954 \(\ge1954\forall x\)

Vậy GTNN của biểu thức là : 1954 khi và chỉ khi x = 4

2 tháng 7 2017

Ta có : (x + 3)(x - 11) + 2003

= x2 - 8x + 33 + 2003

= x2 - 8x + 2026

= x2 - 8x + 16 + 2010

= (x - 4)2 + 2010

Mà (x - 4)\(\ge0\forall x\)

Nên :  (x - 4)2 + 2010 \(\ge2010\forall x\)

Vậy GTNN của biểu thức là : 2010 khi và chỉ khi x = 4

7 tháng 7 2017

\(D=a^2+2ab+b^2+\left(b^2-2b+1\right)+1=\left(a+b\right)^2+\left(b-1\right)^2+1\ge1.\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}b=1\\a=-b=-1\end{cases}.}\)

Vậy Min D =1 khi a=-1;b=1

1:

a: =x^2-7x+49/4-5/4

=(x-7/2)^2-5/4>=-5/4

Dấu = xảy ra khi x=7/2

b: =x^2+x+1/4-13/4

=(x+1/2)^2-13/4>=-13/4

Dấu = xảy ra khi x=-1/2

e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4

Dấu = xảy ra khi x=1/2

f: x^2-4x+7

=x^2-4x+4+3

=(x-2)^2+3>=3

Dấu = xảy ra khi x=2

2:

a: A=2x^2+4x+9

=2x^2+4x+2+7

=2(x^2+2x+1)+7

=2(x+1)^2+7>=7

Dấu = xảy ra khi x=-1

b: x^2+2x+4

=x^2+2x+1+3

=(x+1)^2+3>=3

Dấu = xảy ra khi x=-1

 

28 tháng 6 2019

 A= 1/(x^2+2x+3)

Ta có x^2+2x+3=(x+1)^2 +2

Vì (x+1) ^2 \(\ge\)0 với mọi x

=> (x+1)^2 +2\(\ge\)2 với mọi x

=> vậy GTLN của 1/(x^2+2x+3) =1/2

Dấu bằng xảy ra khi x+1=0 => x=-1

28 tháng 6 2019

B= 1/(x^2 +x+1)

Ta có : x^2 +x+ 1 =(x^2+x+1/4)+3/4

= ( x+1/2)^2 +3/4

Vì (x+1/2)^2 \(\ge\)0 với mọi x

=> (x+1/2)^2 +3/4 \(\ge\)3/4

Vậy GTLN của 1/(x^2+x+1) =3/4

Dấu "=" xảy ra khi (x+1/2)=0 => x=1/2

23 tháng 11 2021

Answer:

3.

\(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)

\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)

\(\Rightarrow4S^2+28S+4y^2+40=0\)

\(\Rightarrow4S^2+28S+49+4y^2-9=0\)

\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)

\(\Rightarrow-3\le2S+7\le3\)

\(\Rightarrow-10\le2S\le-4\)

\(\Rightarrow-5\le S\le-2\left(2\right)\)

Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)

Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)

Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)

AH
Akai Haruma
Giáo viên
28 tháng 12 2018

a)

\(a^2+b^2+2ab+2a+2b+1\)

\(=(a^2+2ab+b^2)+(2a+2b)+1\)

\(=(a+b)^2+2(a+b)+1^2=(a+b+1)^2\)

b)

\(3x(x-2y)+6y(2y-x)\)

\(=3x(x-2y)-6y(x-2y)=(3x-6y)(x-2y)=3(x-2y)(x-2y)\)

\(=3(x-2y)^2\)

AH
Akai Haruma
Giáo viên
28 tháng 12 2018

c)

\(16xy+4y^2-9+16x^2\)

\(=(16x^2+16xy+4y^2)-9\)

\(=(4x+2y)^2-3^2=(4x+2y-3)(4x+2y+3)\)

d)

\(x^4+64y^8=(x^2)^2+(8y^4)^2=(x^2)^2+(8y^4)^2+2.x^2.8y^4-2x^2.8y^4\)

\(=(x^2+8y^4)^2-16x^2y^4=(x^2+8y^4)^2-(4xy^2)^2\)

\(=(x^2+8y^4-4xy^2)(x^2+8y^4+4xy^2)\)

e)

\(3x^2-7x+2=3x^2-6x-x+2=(3x^2-6x)-(x-2)\)

\(=3x(x-2)-(x-2)=(3x-1)(x-2)\)