K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2018

D = \(-\dfrac{5}{x^2-4x+7}\)

Vì: x2 - 4x + 7

= x2 - 4x + 4 + 3

= (x - 2)2 + 3 \(\ge\) 3 \(\forall\)x

\(\Rightarrow\) \(\dfrac{5}{\left(x-2\right)^2+3}\) \(\le\) \(\dfrac{5}{3}\) \(\forall\)x

\(\Rightarrow\) \(-\dfrac{5}{\left(x-2\right)^2+3}\)\(\ge\)-\(\dfrac{5}{3}\) \(\forall\)x

Dấu"=" xảy ra khi:

x - 2 = 0

\(\Rightarrow\) x = 2

Vậy.............

E = \(\dfrac{2x^2+4x+4}{x^2+2x+4}\)

Ta có:

\(\dfrac{2x^2+4x+4}{x^2+2x+4}\)

= \(\dfrac{2\left(x^2+2x+4\right)-4}{x^2+2x+4}\)

= 2 - \(\dfrac{4}{x^2+2x+4}\)

Vì:

x2 + 2x + 4

= x2 + 2x + 1 + 3

= (x + 1)2 + 3 \(\ge\) 3 \(\forall\)x

\(\Rightarrow\) \(\dfrac{4}{\left(x+1\right)^2+3}\) \(\le\) \(\dfrac{4}{3}\) \(\forall\)x

\(\Rightarrow\) 2 - \(\dfrac{4}{\left(x+1\right)^2+3}\) \(\le\) \(\dfrac{2}{3}\) \(\forall\)x

Dấu "=" xảy ra khi:

x + 1 = 0

\(\Rightarrow\) x = -1

Vậy...............

F = \(\dfrac{6x+8}{x^2+1}\)

= \(\dfrac{x^2+6x+9-x^2-1}{x^2+1}\)

= \(\dfrac{\left(x+3\right)^2-\left(x^2+1\right)}{x^2+1}\)

= \(\dfrac{\left(x+3\right)^2}{x^2+1}-1\) \(\ge\) -1 \(\forall\)x

Dấu "=" xảy ra khi:

(x + 3)2 = 0

\(\Rightarrow\) x + 3 = 0

\(\Rightarrow\) x = -3

Vậy.....................

2 tháng 4 2018

Cảm ơn bạn nha🙂

AH
Akai Haruma
Giáo viên
31 tháng 10 2020

a)

$x^2-2x+5y^2-4y+2020=(x^2-2x+1)+5(y^2-\frac{4}{5}y+\frac{2^2}{5^2})+\frac{10091}{5}$

$=(x-1)^2+5(y-\frac{2}{5})^2+\frac{10091}{5}$

$\geq \frac{10091}{5}$

Vậy GTNN của biểu thức là $\frac{10091}{5}$. Giá trị này đạt được tại $(x-1)^2=(y-\frac{2}{5})^2=0$

$\Leftrightarrow x=1; y=\frac{2}{5}$

b)

\(B=(x-5)^2-(3x-7)^2=(x-5-3x+7)(x-5+3x-7)\)

\(=(2-2x)(4x-12)=8(1-x)(x-3)=8(x-3-x^2+3x)\)

\(=8(4x-3-x^2)=8[1-(x^2-4x+4)]=8[1-(x-2)^2]\)

Vì $(x-2)^2\geq 0, \forall x\in\mathbb{R}$ nên $1-(x-2)^2\leq 1$

$\Rightarrow B=8[1-(x-2)^2]\leq 8$. Vậy GTLN của biểu thức là $8$ khi $x=2$

AH
Akai Haruma
Giáo viên
31 tháng 10 2020

c)

$C=5-x^2+2x-9y^2-6y=5-(x^2-2x)-(9y^2+6y)$

$=7-(x^2-2x+1)-(9y^2+6y+1)=7-(x-1)^2-(3y+1)^2$

Vì $(x-1)^2\geq 0; (3y+1)^2\geq 0$ với mọi $x,y$ nên $C=7-(x-1)^2-(3y+1)^2\leq 7$

Vậy GTLN của $C$ là $7$. Giá trị này đạt được tại $(x-1)^2=(3y+1)^2=0$

$\Leftrightarrow x=1; y=\frac{-1}{3}$

d)

$D=-5x^2-9y^2-7x+18y-2015=-(5x^2+7x)-(9y^2-18y)-2015$

$=-5(x^2+\frac{7}{5}x+\frac{7^2}{10^2})-9(y^2-2y+1)-\frac{40071}{20}$
$=-5(x+\frac{7}{10})^2-9(y-1)^2-\frac{40071}{20}$

$\leq -\frac{40071}{20}$

Vậy GTLN của biểu thức là $\frac{-40071}{20}$ khi $x=-\frac{-7}{10}; y=1$


30 tháng 7 2018

từ từ ít ít từng câu thôi bạn ơi

2 tháng 9 2018

\(x^2+3x+2\)

\(=x^2+x+2x+2\)

\(=x\left(x+1\right)+2\left(x+1\right)\)

\(=\left(x+1\right)\left(x+2\right)\)

18 tháng 11 2018

\(A=x^2-6x+10\)

\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)

\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\)     \(\forall x\in z\)

\(\Leftrightarrow A_{min}=1khix=3\)

\(B=3x^2-12x+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\)    \(\forall x\in z\)

\(\Leftrightarrow B_{min}=-11khix=2\)

a) Ta có: \(A=x^2-5x+11\)

\(=x^2-2\cdot x\cdot\frac{5}{2}+\frac{25}{4}+\frac{19}{4}\)

\(=\left(x-\frac{5}{2}\right)^2+\frac{19}{4}\)

Ta có: \(\left(x-\frac{5}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-\frac{5}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}\forall x\)

Dấu '=' xảy ra khi \(x-\frac{5}{2}=0\)

hay \(x=\frac{5}{2}\)

Vậy: Giá trị nhỏ nhất của biểu thức \(A=x^2-5x+11\)\(\frac{19}{4}\) khi \(x=\frac{5}{2}\)

b) Ta có: \(B=\left(x-3\right)^2+\left(x-11\right)^2\)

\(=x^2-6x+9+x^2-22x+121\)

\(=2x^2-28x+130\)

\(=2\left(x^2-14x+65\right)\)

\(=2\left(x^2-14x+49+16\right)\)

\(=2\left(x-7\right)^2+32\)

Ta có: \(\left(x-7\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x-7\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x-7\right)^2+32\ge32\forall x\)

Dấu '=' xảy ra khi x-7=0

hay x=7

Vậy: Giá trị nhỏ nhất của biểu thức \(B=\left(x-3\right)^2+\left(x-11\right)^2\) là 32 khi x=7