Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
Bài 2:
a) Thay x=-2 vào phương trình 2x+k=x-1, ta được
2*(-2)+k=-2-1
⇔-4+k=-3
⇔k=-3-(-4)=-3+4=1
Vậy: Khi k=1 thì phương trình 2x+k=x-1 có nghiệm là x=-2
b) Thay x=2 vào phương trình (2x+1)(9x+2k)-5(x+2)=40, ta được
(2*2+1)*(9*2+2k)-5*(2+2)=40
⇔5*(18+2k)-20=40
⇔5*(18+2k)=40+20
⇔18+2k=12
⇔2k=12-18=-6
⇔k=-3
Vậy: khi k=-3 thì phương trình (2x+1)(9x+2k)-5(x+2)=40 có nghiệm là x=2
c) Thay x=1 vào phương trình 2(2x+1)+18=3(x+2)(2x+k), ta được
2*(2*1+1)+18=3*(1+2)*(2*1+k)
⇔2*3+18=3*3*(2+k)
⇔24=9*(2+k)
⇔\(2+k=\frac{24}{9}=\frac{8}{3}\)
\(\Leftrightarrow k=\frac{8}{3}-2=\frac{2}{3}\)
Vậy: khi \(k=\frac{2}{3}\) thì phương trình 2(2x+1)+18=3(x+2)(2x+k) có nghiệm là x=1
a,\(4x\left(2x+3\right)-x\left(8x-1\right)=5\left(x+2\right)\)
\(< =>8x^2+12x-8x^2+x=5x+10\)
\(< =>13x=5x+10< =>8x=10\)
\(< =>x=\frac{10}{8}=\frac{5}{4}\)
b, \(\left(3x-5\right)\left(3x+5\right)-x\left(9x-1\right)=4\)
\(< =>9x^2-25-9x^2+x=4\)
\(< =>x=4+29=33\)
c,\(3-4x\left(25-2x\right)=8x^2+x-300\)
\(< =>3-100x+8x^2=8x^2+x-300\)
\(< =>x+100x=3+300\)
\(< =>101x=303< =>x=\frac{303}{101}=3\)
d,\(2\left(1-\frac{3x}{5}\right)-\frac{2+3x}{10}=7-\frac{3\left(2x+1\right)}{4}\)
\(< =>2-\frac{6x}{5}-\frac{2+3x}{10}=7-\frac{6x+3}{4}\)
\(< =>-\frac{24x}{20}-\frac{4+6x}{20}+\frac{30x+15}{20}=5\)
\(< =>\frac{30x-6x-24x+15-4}{20}=5\)
\(< =>\frac{11}{5}=5< =>11=25\)(vo li)