K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2018

a)\(A=x^2-4x+15\)

\(A=x^2-2x-2x+4+9\)

\(A=x\left(x-2\right)-2\left(x-2\right)+9\)

\(A=\left(x-2\right)^2+9\ge9.Với\forall x\in Q\)

Dấu "=" xảy ra khi \(x-2=0\Leftrightarrow x=2\)

Vậy Min A = 9 <=> x = 2

b)\(B=x\left(x-3x\right)=x.\left(-2x\right)=-2x^2\ge0\)

Dấu "=" xảy ra khi \(x=0\)

Vậy Min B = 0 <=> x = 0

c)\(C=x^2+y^2+4x+6y+20\)

\(C=x^2+4x+4+y^2+6y+9+7\)

\(C=\left(x+2\right)^2+\left(y+3\right)^2+7\ge7\)

Dấu "=" xảy ra khi : x = -2 ; y = -3

Vậy Min C = 7 <=> x = -2 ; y = -3

27 tháng 7 2018

\(A=x^2-4x+15=x^2-4x+4+11=\left(x-2\right)^2+11\)

Vì \(\left(x-2\right)^2\ge0\left(\forall x\right)\Rightarrow\left(x-2\right)^2+11\ge11\)

Dấu "=" xảy ra <=> (x-2)2 = 0 <=> x-2 = 0 <=> x=2

Vậy GTNN của biểu thức = 11 khi và chỉ khi x = 2

\(C=x^2+y^2+4x+6y+20\)

     \(=x^2+4x+4+y^2+6y+9+7\)

      \(=\left(x+2\right)^2+\left(x+3\right)^2+7\)

Vì \(\left(x+2\right)^2\ge0\left(\forall x\right);\left(y+3\right)^2\ge0\left(\forall y\right)\)

\(\Rightarrow\left(x+2\right)^2+\left(y+3\right)^2+7\ge7\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x+2\right)^2=0\\\left(y+3\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+2=0\\y+3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=-3\end{cases}}}\)

Vậy GTNN của biểu thức bằng 7 khi và chỉ khi x = -2 và y = -3

12 tháng 9 2016

Ta có : 

\(M=x^2+y^2-x+6y+10\)

     \(=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+\frac{3}{4}\)

     \(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\)

Có : \(\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2\ge0\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu " = " xảy ra khi và chỉ khi \(x-\frac{1}{2}=0\);\(y+3=0\)

                                                  \(\Leftrightarrow\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}\)

Vậy \(Min_A=\frac{3}{4}\) khi và chỉ khi \(\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}\)

                                                   

 

13 tháng 7 2020

A = x2 + 2y2 + 2xy - 2x - 6y + 6

A = (x2 + 2xy + y2) - 2(x + y) + 1 + (y2 - 4y + 4) + 1

A = (x + y - 1)2 + (y - 2)2 + 1 \(\ge\)\(\forall\)x;y

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+y-1=0\\y-2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=1-y\\y=2\end{cases}}\) <=> \(\hept{\begin{cases}x=-1\\y=2\end{cases}}\)

Vậy MinA = 1 khi x = -1 và y = 2

21 tháng 7 2016

P = \(x^2-2x+1+4\)

P = \(\left(x+1\right)^2+4\)

Mà \(\left(x+1\right)^2\ge0\)  nên \(\left(x+1\right)^2+4\ge4\)

Dấu ''='' xảy ra khi và chỉ khi x = -1

 

21 tháng 7 2016

Câu Q bạn làm tương tự câu P

\(M=x^2-2.x.\frac{1}{2}+\frac{1}{4}+y^2+6y+9+\frac{3}{4}\)

\(M=\left(x+\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\)

sau đó bạn lý luận như câu trên nhé

Chúc bạn làm bài tốt

25 tháng 6 2017

Bài 1:

a, \(x^2-6x+10=x^2-3x-3x+9+1\)

\(=x.\left(x-3\right)-3.\left(x-3\right)+1=\left(x-3\right)^2+1\)

Với mọi giá trị của \(x\in R\) ta có:

\(\left(x-3\right)^2\ge0\Rightarrow\left(x-3\right)^2+1\ge1>0\)

Vậy................... (đpcm)

b, \(4x-x^2-5=-\left(x^2-4x+5\right)\)

\(=-\left(x^2-2x-2x+4+1\right)\)

\(=-\left[x.\left(x-2\right)-2.\left(x-2\right)+1\right]\)

\(=-\left[\left(x-2\right)^2+1\right]\)

Với mọi giá trị của \(x\in R\) ta có:

\(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2+1\ge1\)

\(\Rightarrow-\left[\left(x-2\right)^2+1\right]\le-1< 0\)

Vậy............... (đpcm)

Chúc bạn học tốt!!!

25 tháng 6 2017

Bài 2:

a, \(P=x^2-2x+5\)

\(P=x^2-x-x+1+4=\left(x-1\right)^2+4\)

Với mọi giá trị của \(x\in R\)ta có:

\(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+4\ge4\)

Hay \(P\ge4\) với mọi giá trị của \(x\in R\).

Để \(P=4\) thì \(\left(x-1\right)^2+4=4\)

\(\Rightarrow x=1\)

Vậy........

b, Xem lại đề.

c, \(M=x^2+y^2-x+6y+10\)

\(M=x^2-\dfrac{1}{2}x-\dfrac{1}{2}x+\dfrac{1}{4}+y^2+3y+3y+9+\dfrac{3}{4}\)

\(M=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\)

Với mọi giá trị của \(x;y\in R\)ta có:

\(\left(x-\dfrac{1}{2}\right)^2\ge0;\left(y+3\right)^2\ge0\)

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2\ge0\)

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Hay \(M\ge\dfrac{3}{4}\) với mọi giá trị của \(x;y\in R\).

Để \(M=\dfrac{3}{4}\) thì \(\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}=\dfrac{3}{4}\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x-\dfrac{1}{2}\right)^2=0\\\left(y+3\right)^2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)

Vậy............

Chúc bạn học tốt!!!

25 tháng 6 2017

Bài 1 :

a) \(x^2-6x+10\)

\(=x^2-6x+9+1\)

\(=\left(x-3\right)^2+1>0\) với mọi \(x\) (vì \(\left(x-3\right)^2\ge0\) )

\(\rightarrowđpcm\)

b) \(4x-x^2-5\)

\(=-x^2+4x-4-1\)

\(=-\left(x^2-4x+4\right)-1\)

\(=-\left(x-2\right)^2-1< 1\) (vì \(-\left(x-2\right)^2< 0\) với mọi x)

\(\rightarrowđpcm\)

25 tháng 6 2017

Bài 2:

a, \(P=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\)

Ta có: \(P=\left(x-1\right)^2+4\ge4\)

Dấu " = " khi \(\left(x-1\right)^2=0\Leftrightarrow x=1\)

Vậy \(MIN_P=4\) khi x = 1

c, \(M=x^2+y^2-x+6y+10\)

\(=\left(x^2-\dfrac{1}{2}.x.2+\dfrac{1}{4}\right)+\left(y^2+6y+9\right)+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\)

Ta có: \(\left\{{}\begin{matrix}\left(x-\dfrac{1}{2}\right)^2\ge0\\\left(y+3\right)^2\ge0\end{matrix}\right.\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2\ge0\)

\(\Leftrightarrow M=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Dấu " = " khi \(\left\{{}\begin{matrix}\left(x-\dfrac{1}{2}\right)^2=0\\\left(y+3\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)

Vậy \(MIN_M=\dfrac{3}{4}\) khi \(x=\dfrac{1}{2},y=-3\)

1 tháng 2 2019

\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=8\)

1 tháng 2 2016

a, A=2+4=6

b, B=x*2-xy+y*2=(x-y)*2=2*2=4

minh nha!!