Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\left|2000x+2012\right|+\left|2013-2000x\right|\ge\left|2000x+2012+2013-2000x\right|=\left|4025\right|=4025\)
^.^
Áp dụng bđt: \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
Trở lại bài toán ta có:
\(C=\left|2000x+2016\right|+\left|2000x-2017\right|\)
\(C=\left|2000x+2016\right|+\left|2017-2000x\right|\)
\(C\ge\left|2000x+2016+2017-2000x\right|=4033\)
Dấu "=" xảy ra khi:
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}2000x+2016\ge0\\2017-2000x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}2000x+2016\le0\\2017-2000x\le0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2000x\ge-2016\\2000x\le2017\end{matrix}\right.\\loại\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{2016}{2000}\\x\le\dfrac{2017}{2000}\end{matrix}\right.\)
Vậy \(-\dfrac{2016}{2000}\le x\le\dfrac{2017}{2000}\)
bạn ơi còn cách phân tích từng giá trị tuyệt đối thì làm kiểu gì bạn?
Ta có: C= |2000x+2016|+|2000x-2017|
=> C = |2000x+2016+2000x-2017|
= 4000x-1 <= -1
Dấu "=" xảy ra khi 4000x=0 => x=0
Vậy Cmax=-1 khi x=0
Không chắc. Chúc bạn học giỏi!
C=|2000x+2016|+|2000x-2017|=|2000x+2016|+|2017-2000x|
Áp dụng : |A|+|B|>=|A+B|
dấu "=" xảy ra <=>A.B=0 ta có
C=|2000x+2016|+|2017-2000x|>=|2000x+2016+2017-200x|=4033
dấu "=" xảy ra <=>(2000x+2016).(2017-2000x)=0
<=>2000x+2016=0=>2000x=-2016=>x=1.008
hoặc 2017-2000x=0=>x=2017:2000=1,0085
vaayjMaxC=4033<=>x=.......
a/ \(A=\dfrac{2012}{\left|x\right|+2013}\)
vì: \(\left|x\right|\ge0\Rightarrow\left|x\right|+2013\ge2013\)
=> \(\dfrac{2012}{\left|x\right|+2013}\le\dfrac{2012}{2013}\)
Dấu ''='' xảy ra khi x = 0
Vậy MAXA = 2012/2013 khi x = 0
b/ \(B=\dfrac{\left|x\right|+2012}{-2013}\)
Vì: \(\left|x\right|\ge0\Rightarrow\left|x\right|+2012\ge2012\)
=> \(\Rightarrow\dfrac{\left|x\right|+2012}{-2013}\le-\dfrac{2012}{2013}\)
Dấu ''='' xảy ra khi x = 0
Vậy.........
Bài 2: Ăn cơm xoq lm cho
Bài 2:
a, Để C nhỏ nhất thì /x/+2012 phải nhỏ nhất
Mà /x/ luôn lớn hơn hoặc bằng 0 => /x/+2012 nhỏ nhất khi /x/ =0
=> x+0, GTNN của C=\(\dfrac{0+2012}{2013}=\dfrac{2012}{2013}\)khi x=0
1)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(\left|y-5\right|+\left|y+2012\right|\ge\left|y-5+2012+y\right|=2007\)
Dấu "=" khi \(-2012\le x\le5\)
Vậy MinA=2007 khi \(-2012\le x\le5\)
2)Ta thấy:\(\left|2x-3\right|\ge0\)
\(\Rightarrow-\left|2x-3\right|\le0\)
\(\Rightarrow-5-\left|2x-3\right|\le-5\)
Dấu "=" khi \(x=\frac{3}{2}\)
Vậy MaxN=-5 khi \(x=\frac{3}{2}\)
có \(P=|2013-x|+|2014-x|\)
=\(|2013-x|+|x-2014|\)
\(\Rightarrow P\ge|2013-x+x-2014|=|-1|=1\)
\(\Rightarrow MinP=1\Leftrightarrow Dấu=xảyra\)\(\Leftrightarrow\left(2013-x\right)\left(x-2014\right)\ge0\)
\(\Leftrightarrow2013\le x\le2014\)
kb với mk nha!!!!!!!! ^_^ ^_^
\(P=\left|2013-x\right|+\left|2014-x\right|\)
\(P=\left|x-2013\right|+\left|2014-x\right|\)
Ta có: \(\hept{\begin{cases}\left|x-2013\right|\ge x-2013\\\left|2014-x\right|\ge2014-x\end{cases}}\Rightarrow P\ge x-2013+2014-x=1\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|x-2013\right|=x-2013\\\left|2014-x\right|=2014-x\end{cases}}\Leftrightarrow\hept{\begin{cases}x-2013\ge0\\2014-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge2013\\x\le2014\end{cases}\Leftrightarrow}2013\le x\le2014}\)
Vậy \(P_{min}=1\Leftrightarrow2013\le x\le2014\)
đề kiểu sao vậy viết lại đi
đề làm sao bạn ko đọc dc à??????