K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2019

Em nghĩ là như vầy ạ:

\(B=\frac{4-x+x+1}{\left(4-x\right)\left(x+1\right)}=\frac{5}{-x^2+3x+4}\) (-1 < x < 4)

Ta có: \(-x^2+3x+4=-\left(x-\frac{3}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)

Do đó: \(B=\frac{5}{-x^2+3x+4}\ge\frac{5}{\frac{25}{4}}=\frac{20}{25}=\frac{4}{5}\)

Vậy min B = 4/5 khi x = 3/2 (TMĐK)

5 tháng 5 2019

1/(x + 1) + 1/(4 - x) ≥ (1 + 1)^2/(x + 1 + 4 - x) = 4/5

22 tháng 7 2017

\(\frac{x-3}{x-2}+\frac{x-2}{x-4}=3\frac{1}{5}\)

\(=\frac{x-3}{x-2}+\frac{x-2}{x-4}=\frac{16}{5}\)

\(\Rightarrow5\left(x-3\right)\left(x-4\right)+5\left(x-2\right)\left(x-2\right)=16\left(x-2\right)\left(x-4\right)\)

\(\Leftrightarrow5x^2-35x+60+5x^2-20x+20=16x^2-96x+128\)

\(\Leftrightarrow10x^2-55x+80=16x^2-96x+128\)

\(\Leftrightarrow-6x^2+41x-48=0\)

......

22 tháng 7 2017

\(\frac{x-3}{x-2}+\frac{x-2}{x-4}=3\frac{1}{5}\)

\(\Leftrightarrow\frac{x-3}{x-2}+\frac{x-2}{x-4}=\frac{16}{5}\)

\(\Leftrightarrow\frac{5\left(x-3\right)\left(x-4\right)+5\left(x-2\right)^2}{5\left(x-2\right)\left(x-4\right)}=\frac{16.\left(x-2\right)\left(x-4\right)}{5\left(x-2\right)\left(x-4\right)}\)

\(\Rightarrow5x^2-20x-15x+60+5x^2-20x+20=16x^2-64x-32x+128\)

\(\Leftrightarrow10x^2-55x+80=16x^2-96x+128\)

\(\Leftrightarrow6x^2-41x+48=0\)

\(\Leftrightarrow x=\frac{16}{3};x=\frac{3}{2}\)

27 tháng 2 2020

\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)

\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)

\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)

\(=\frac{25}{2}\)

Dấu "=" xảy ra tại x=y=1/2

28 tháng 2 2020

Bạn giải thích rõ hơn được không? Mình không hiểu lắm :(((

Bài 1: 

a: \(\dfrac{x-1}{x+1}-\dfrac{x+1}{x-1}+\dfrac{4}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x^2-2x+1-x^2-2x-1+4}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{-4x+4}{\left(x-1\right)\left(x+1\right)}=\dfrac{-4}{x+1}\)

b: \(=\dfrac{xy\left(x^2+y^2\right)}{x^4y}\cdot\dfrac{1}{x^2+y^2}=\dfrac{x}{x^4}=\dfrac{1}{x^3}\)

c: Đề thiếu rồi bạn

11 tháng 12 2016

a) \(\frac{x-1}{x+1}-\frac{x+1}{x-1}+\frac{4}{x^2-1}\left(ĐK:x\ne\pm1\right)\)

\(=\frac{\left(x-1\right)^2-\left(x+1\right)^2+4}{\left(x-1\right)\left(x+1\right)}\)

\(\frac{x^2-2x+1-x^2-2x-1+4}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{-4x+4}{\left(x-1\right)\left(x+1\right)}=\frac{-4\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=-\frac{4}{x+1}\)

b) \(\frac{x^3y+xy^3}{x^4y}:\left(x^2+y^2\right)\left(ĐK:x,y\ne0\right)\)

\(=\frac{xy\left(x^2+y^2\right)}{x^4y}\cdot\frac{1}{x^2+y^2}\)

\(=\frac{1}{x^3}\)

23 tháng 4 2018

Ta có : 

\(A=\frac{x^2+x+1}{\left(x+1\right)^2}\)

\(A=\frac{x^2+2x+1-x-1+1}{x^2+2x+1}\)

\(A=\frac{x^2+2x+1}{\left(x+1\right)^2}+\frac{-x-1}{\left(x+1\right)^2}+\frac{1}{\left(x+1\right)^2}\)

\(A=\frac{\left(x+1\right)^2}{\left(x+1\right)^2}-\frac{x+1}{\left(x+1\right)^2}+\frac{1^2}{\left(x+1\right)^2}\)

\(A=1-\frac{1}{x+1}+\left(\frac{1}{x+1}\right)^2\)

Đặt \(a=\frac{1}{x+1}\) ta có : 

\(A=1-a+a^2\)

\(A=a^2-a+1\)

\(A=\left(a^2-a+\frac{1}{4}\right)+\frac{3}{4}\)

\(A=\left(a-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu "=" xảy ra khi và chỉ khi \(\left(a-\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow\)\(a-\frac{1}{2}=0\)

\(\Leftrightarrow\)\(a=\frac{1}{2}\)

Do đó : 

\(a=\frac{1}{x+1}\)

\(\Leftrightarrow\)\(\frac{1}{2}=\frac{1}{x+1}\)

\(\Leftrightarrow\)\(x+1=2\)

\(\Leftrightarrow\)\(x=1\)

Vậy GTNN  của \(A\) là \(\frac{3}{4}\) khi \(x=1\)

Chúc bạn học tốt ~ 

22 tháng 9 2019

\(x^2-4x-1=0\)

\(\left(x^2-2\cdot x\cdot2+4\right)-5=0\)

\(\left(x-2\right)^2=\left(\sqrt{5}\right)^2\)

\(\Rightarrow x-2=\pm\sqrt{5}\)

Tự giải tiếp nha ...

22 tháng 9 2019

\(x^2-4x-1=0\)

\(\Delta=\left(-4\right)^2-4.\left(-1\right)=20\)

pt có 2 nghiệm

\(x_1=\frac{-4-\sqrt{20}}{2}=-2-\sqrt{5}\)

\(x_2=\frac{-4+\sqrt{20}}{2}=-2+\sqrt{5}\)

13 tháng 12 2018

để A nhỏ nhất => x2+1 nhỏ nhất và lớn hơn 0 (vì 2>0 và không đổi)

ta có: \(x^2+1\ge1\)

dấu = xảy ra khi x2=0

=> x=0

Vậy Min A=\(\frac{1}{2}\)khi x=0

28 tháng 11 2016

\(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-4x-1}{x^2-1}\right):\left(\frac{x+2006}{x}\right)\)

\(=\left(\frac{x^2+2x+1-x^2+2x-1+x^2-4x-1}{x^2-1}\right):\left(\frac{x+2006}{x}\right)\)

\(=\frac{x^2-1}{x^2-1}:\frac{x+2006}{x}=\frac{x}{x+2006}\)