K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2018

để A nhỏ nhất => x2+1 nhỏ nhất và lớn hơn 0 (vì 2>0 và không đổi)

ta có: \(x^2+1\ge1\)

dấu = xảy ra khi x2=0

=> x=0

Vậy Min A=\(\frac{1}{2}\)khi x=0

23 tháng 4 2018

Ta có : 

\(A=\frac{x^2+x+1}{\left(x+1\right)^2}\)

\(A=\frac{x^2+2x+1-x-1+1}{x^2+2x+1}\)

\(A=\frac{x^2+2x+1}{\left(x+1\right)^2}+\frac{-x-1}{\left(x+1\right)^2}+\frac{1}{\left(x+1\right)^2}\)

\(A=\frac{\left(x+1\right)^2}{\left(x+1\right)^2}-\frac{x+1}{\left(x+1\right)^2}+\frac{1^2}{\left(x+1\right)^2}\)

\(A=1-\frac{1}{x+1}+\left(\frac{1}{x+1}\right)^2\)

Đặt \(a=\frac{1}{x+1}\) ta có : 

\(A=1-a+a^2\)

\(A=a^2-a+1\)

\(A=\left(a^2-a+\frac{1}{4}\right)+\frac{3}{4}\)

\(A=\left(a-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu "=" xảy ra khi và chỉ khi \(\left(a-\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow\)\(a-\frac{1}{2}=0\)

\(\Leftrightarrow\)\(a=\frac{1}{2}\)

Do đó : 

\(a=\frac{1}{x+1}\)

\(\Leftrightarrow\)\(\frac{1}{2}=\frac{1}{x+1}\)

\(\Leftrightarrow\)\(x+1=2\)

\(\Leftrightarrow\)\(x=1\)

Vậy GTNN  của \(A\) là \(\frac{3}{4}\) khi \(x=1\)

Chúc bạn học tốt ~ 

19 tháng 12 2018

A=2(x^2+3/2 x)+1

   =2(x^2+2*x*3/4 +9/16)-1/8

   =2(x+3/4)^2-1/8  lớn hơn hoặc bằng -1/8

  suy ra GTNN của A là -1/8 khi x=-3/4

19 tháng 12 2018

\(A=2.\left(x^2+\frac{3x}{2}\right)+1=2.\left(x^2+\frac{2.x.3}{4}+\frac{9}{16}\right)-\frac{1}{8}\)

\(A=2.\left(x+\frac{3}{4}\right)^2-\frac{1}{8}\ge-\frac{1}{8}\)

dấu = xảy ra khi \(x+\frac{3}{4}=0\)

\(\Rightarrow x=-\frac{3}{4}\). Vậy....

p/s: Đinh Quốc Tuấn làm đúng rùi nhưng vt thế khs nhìn quá, lần sau b dùng công thức á

3 tháng 12 2018

\(A=\frac{x^2-4x+5}{x-3}=\frac{x^2-3x-x+3+2}{x-3}=\frac{x\left(x-3\right)-\left(x-3\right)+2}{x-3}=x-1+\frac{2}{x-3}\)

Để \(A\in Z\Leftrightarrow x-3\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

<=>x thuộc {4;2;5;1}

18 tháng 12 2018

Bạn nhân biểu thức lên 2 lần (mình đặt là A nên nhân 2 lần là 2A)

Nhóm theo hằng đảng thức ta được (x-y)^2 +(x-2)^2 +(y-2)^2 +10 

Bạn chứng minh nó luôn lớn hơn hoặc bằng 10 với mọi x,y vì mỗi bình phương luôn lớn hơn 0 và công 10 nên lớn hơn hoặc bằng 10 => 2A>=10 => A>= 5 

Dấu bằng xảy ra khi và chỉ khi x=y=2

18 tháng 12 2018

\(x^2+y^2-xy-2x-2y+9=x^2+y^2+2xy-2x-2y+9-3xy\)

\(=\left(x+y\right)^2-2\left(x+y\right)+9-3xy=\left(x+y-2\right)\left(x+y\right)+9-3xy.\)

\(đếnđâytịt\)

c, =3 dễ

\(\frac{3x^2-6x+9}{x^2-2x+3}=\frac{3\left(x^2-2x+3\right)}{x^2-2x+3}=3\)

18 tháng 12 2018

Câu b bạn không làm à? Làm hộ mình với! Còn câu a thì còn -3xy thì?

5 tháng 5 2019

Em nghĩ là như vầy ạ:

\(B=\frac{4-x+x+1}{\left(4-x\right)\left(x+1\right)}=\frac{5}{-x^2+3x+4}\) (-1 < x < 4)

Ta có: \(-x^2+3x+4=-\left(x-\frac{3}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)

Do đó: \(B=\frac{5}{-x^2+3x+4}\ge\frac{5}{\frac{25}{4}}=\frac{20}{25}=\frac{4}{5}\)

Vậy min B = 4/5 khi x = 3/2 (TMĐK)

5 tháng 5 2019

1/(x + 1) + 1/(4 - x) ≥ (1 + 1)^2/(x + 1 + 4 - x) = 4/5