Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn nhân biểu thức lên 2 lần (mình đặt là A nên nhân 2 lần là 2A)
Nhóm theo hằng đảng thức ta được (x-y)^2 +(x-2)^2 +(y-2)^2 +10
Bạn chứng minh nó luôn lớn hơn hoặc bằng 10 với mọi x,y vì mỗi bình phương luôn lớn hơn 0 và công 10 nên lớn hơn hoặc bằng 10 => 2A>=10 => A>= 5
Dấu bằng xảy ra khi và chỉ khi x=y=2
\(x^2+y^2-xy-2x-2y+9=x^2+y^2+2xy-2x-2y+9-3xy\)
\(=\left(x+y\right)^2-2\left(x+y\right)+9-3xy=\left(x+y-2\right)\left(x+y\right)+9-3xy.\)
\(đếnđâytịt\)
b
c, =3 dễ
\(\frac{3x^2-6x+9}{x^2-2x+3}=\frac{3\left(x^2-2x+3\right)}{x^2-2x+3}=3\)
a) 9x2 + y2 + 12x - 10y + 40
= ( 9x2 + 12x + 4 ) + ( y2 - 10y + 25 ) + 11
= ( 3x + 2 )2 + ( y - 5 )2 + 11 ≥ 11 ∀ x, y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}3x+2=0\\y-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{2}{3}\\y=5\end{cases}}\)
Vậy GTNN của biểu thức = 11 <=> x = -2/3 ; y = 5
b) 2x2 + 2y2 - 4x - 4y - 2xy + 30
= ( x2 - 2xy + y2 ) + ( x2 - 4x + 4 ) + ( y2 - 4y + 4 ) + 22
= ( x - y )2 + ( x - 2 )2 + ( y - 2 )2 + 22 ≥ 22 ∀ x, y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-y=0\\x-2=0\\y-2=0\end{cases}}\Leftrightarrow x=y=2\)
Vậy GTNN của biểu thức = 22 <=> x = y = 2
a) Đặt \(A=9x^2+y^2+12x-10y+40\)
\(\Rightarrow A=\left(9x^2+12x+4\right)+\left(y^2-10y+25\right)+11\)
\(=\left(3x+2\right)^2+\left(y-5\right)^2+11\)
Vì \(\left(3x+2\right)^2\ge0\forall x\); \(\left(y-5\right)^2\ge0\forall y\)
\(\Rightarrow\left(3x+2\right)^2+\left(y-5\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(3x+2\right)^2+\left(y-5\right)^2+11\ge11\forall x,y\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}3x+2=0\\y-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}3x=-2\\y=5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-2}{3}\\y=5\end{cases}}\)
Vậy \(minA=11\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{-2}{3}\\y=5\end{cases}}\)
b) Đặt \(B=2x^2+2y^2-4x-4y-2xy+30\)
\(\Rightarrow B=\left(x^2-2xy+y^2\right)+\left(x^2-4x+4\right)+\left(y^2-4y+4\right)+22\)
\(=\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2\right)^2+22\)
Vì \(\left(x-y\right)^2\ge0\forall x,y\); \(\left(x-2\right)^2\ge0\forall x\); \(\left(y-2\right)^2\ge0\forall y\)
\(\Rightarrow\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2\right)^2+22\ge22\forall x,y\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x-y=0\\x-2=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y\\x=2\\y=2\end{cases}}\Leftrightarrow x=y=2\)
Vậy \(minB=22\)\(\Leftrightarrow x=y=2\)
Tìm hệ số của \(x^2y^2\)trong khai triển \(\left(2x+3y^2\right)^3\)
GIÚP MÌNH VỚI MAI MÌNH ĐI HỌC RỒI
\(\left(2x+3y^2\right)^3\)
\(=8x^3+36x^2y^2+54xy^4+27y^6\)
Xét thấy hệ số của \(x^2y^2\)khi khai triển là 36
Vậy hệ số của \(x^2y^2\)khi khai triển \(\left(2x+3y^2\right)^3\)là \(36\)
:V Đợi tí làm lại đã
Đang làm tự nhin mất cmnr bài làm
A=2(x^2+3/2 x)+1
=2(x^2+2*x*3/4 +9/16)-1/8
=2(x+3/4)^2-1/8 lớn hơn hoặc bằng -1/8
suy ra GTNN của A là -1/8 khi x=-3/4
\(A=2.\left(x^2+\frac{3x}{2}\right)+1=2.\left(x^2+\frac{2.x.3}{4}+\frac{9}{16}\right)-\frac{1}{8}\)
\(A=2.\left(x+\frac{3}{4}\right)^2-\frac{1}{8}\ge-\frac{1}{8}\)
dấu = xảy ra khi \(x+\frac{3}{4}=0\)
\(\Rightarrow x=-\frac{3}{4}\). Vậy....
p/s: Đinh Quốc Tuấn làm đúng rùi nhưng vt thế khs nhìn quá, lần sau b dùng công thức á