K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2019

Tham khảo nhé:Câu hỏi của Nguyễn Như Quỳnh - Toán lớp 7 | Học trực tuyến

5 tháng 12 2018

tìm tất cả các số nguyên thỏa mãn :x+y/x^2-xy+y^2=3/7

5 tháng 12 2018

\(|x-2013|;|x-2014|;|x-2015|\ge0;A_{min}\Leftrightarrow|x-2013|;|x-2014|;|x-2015|đạtGTNN\)

Mặt khác: \(x-2013|;|x-2014|;|x-2015|\)sẽ ko đồng thời=0

mà: 2015-2014=1;2014-2013=1

còn các th khác 2015-2013=2; 2014-2013=1

nên: \(A_{min}\Leftrightarrow|x-2014|đạtGTNN\Leftrightarrow x=2014\)

Vậy: Amin=2<=> x=2014

16 tháng 1 2018

\(A=\left|x-2011\right|+\left|x-2012\right|+\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|\)

\(A=\left|x-2011\right|+\left|x-2012\right|+\left|2014-x\right|+\left|2015-x\right|+\left|x-2013\right|\)

Ta có: \(\left\{{}\begin{matrix}\left|x-2011\right|\ge x-2011\\\left|x-2012\right|\ge x-2012\\\left|2014-x\right|\ge2014-x\\\left|2015-x\right|\ge2015-x\end{matrix}\right.\)

\(A\ge x-2011+x-2012+2014-x+2015-x+\left|x-2013\right|\)

\(A\ge6+\left|x-2013\right|\ge6\)

Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}x\ge2011\\x\ge2012\\x\le2014\\x\le2015\end{matrix}\right.\)\(x=2013\)

\(\Rightarrow\left\{{}\begin{matrix}2012\le x\le2014\\x=2013\end{matrix}\right.\Leftrightarrow x=2013\)

Vậy....

25 tháng 2 2017

để Anhỏ nhất => x=2013 mình nghĩ thế thôi

31 tháng 3 2017

\(A=\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|\)

\(=\left|x-2013\right|+\left|x-2014\right|+\left|2015-x\right|\)

\(\ge x-2013+0+2015-x=2\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x-2013\ge0\\x-2014=0\\x-2015\le0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\ge2013\\x=2014\\x\le2015\end{matrix}\right.\)\(\Rightarrow x=2014\)

Vậy với \(x=2014\) thì \(A_{MIN}=2\)

31 tháng 3 2017

Hình như bn làm sai rui Ace Legona ạ!!!!

31 tháng 1 2017

Áp dụng bđt |a|+|b|+|c|+|d| \(\ge\)|a+b+c+d| ta có:

B = |x-2016|+|x-2015|+|x-2014|+|x-2013|+|x-2012|+2016

B = |2016-x|+|2015-x|+|x-2014|+|x-2013|+|x-2012|+2016 \(\ge\) |(2016-x)+(2015-x)+0+(x-2013)+(x-2012)|+2016 = |6|+2016 = 6+2016 = 2022

Dấu "=" xảy ra khi \(\left\{\begin{matrix}x-2015\le0\\x-2014=0\\x-2013\ge0\end{matrix}\right.\) => x = 2014

31 tháng 1 2017

Ta có: \(\left|x-2016\right|\ge0\forall x\in R\)

\(\left|x-2015\right|\)\(\ge0\forall x\in R\)

.....................

=> |x-2016|+|x-2015|+|x-2014|+|x-2013|+|x-2012| \(\ge0\forall x\in R\)

=> |x-2016|+|x-2015|+|x-2014|+|x-2013|+|x-2012| + 2016 \(\ge0\forall x\in R\)

Dấu "=" xảy ra khi \(\left|x-2016\right|=0\); .....; \(\left|x-2012\right|=0\)
Với \(\left|x-2016\right|=0\) => x = \(2016\)
Với \(\left|x-2015\right|=0\) => x = 2015
Với \(\left|x-2014\right|=0\) => x = 2014
Với \(\left|x-2013\right|=0\) => x = 2013
Với \(\left|x-2012\right|=0\) => x = 2012
Vậy GTNN của B = 2016 khi x \(\in\) \(\left\{2016;2015;2014;2013;2012\right\}\)
11 tháng 6 2015

x+2/2013+x+1/2014=x/2015+x-1/2016

7 tháng 4 2017

a) \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|=2007\)

Ta có: \(\left|x-3\right|\ge0\forall x\)

\(\Rightarrow\left(\left|x-3\right|+2\right)^2\ge\left(0+2\right)^2=2^2=4\)

Lại có: \(\left|y+3\right|\ge0\forall y\)

\(\Rightarrow\left(\left|x-3\right|+2\right)^2+\left|y+3\right|\ge4+0=4\)

\(\Rightarrow\left(\left|x-3\right|+2\right)^2+\left|y+3\right|+2007\ge4+2007=2011\)

 \(\Rightarrow P_{MIN}=2011\)

Dấu "=" xảy ra khi \(\Leftrightarrow\orbr{\begin{cases}\left|x-3\right|=0\\\left|y+3\right|=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\y=-3\end{cases}}}\)

Vậy \(P_{MIN}=2011\) tại \(\orbr{\begin{cases}x=3\\y=-3\end{cases}}\)