K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2018

Áp dụng \(|a|\ge0\)với \(\forall a\)Dấu "=" xảy ra khi \(a\ge0\)

Ta có: \(|x-2013|+|x-2015|=|x-2013|+|2015-x|\ge x-2013+2015-x=2với\forall x\)

Dâu "=" xảy ra khi \(x-2013\ge0\)\(2015-x\ge0\)\(\Leftrightarrow\)\(2013\le x\le2015\)

Lại có: \(|x-2014|\ge0với\forall x\)

Dấu "=" xảy ra khi \(x-2014=0\Leftrightarrow x=2014\)

Do đó \(A\ge2+0=2với\forall x\)

Dấu "=" xảy ra khi \(2013\le x\le2015\)và \(x=2014\)\(\Leftrightarrow\)\(x=2014\)

Vậy \(minA=2\)khi\(x=2014\)

4 tháng 3 2018

Ta có: \(\left|x-2013\right|+\left|x-2015\right|=\left|x-2013\right|+\left|2015-x\right|\ge\left|x-2013+2015-x\right|\)

                                                                         \(\left|x-2013\right|+\left|2015-x\right|\ge2\)\(\left(1\right)\)

                                                                   Và \(\left|2014-x\right|\ge0\)

                                                                  \(\Rightarrow\left|x-2013\right|+\left|2014-x\right|+\left|2015-x\right|\ge2\)

                                                                Mà \(\left|x-2013\right|+\left|2014-x\right|+\left|2015-x\right|=A\)

                                                                      \(\Rightarrow A\)có GTNN là 2

                                         Từ\(\left(1\right)\)

                                 \(\Rightarrow\)Dấu \("="\)xảy ra khi \(\left(x-2013\right)\left(2015-x\right)\ge0\)

                                                \(\Rightarrow2013\le x\le2015\)

                                                 \(\Rightarrow x=2014\)

                              Vậy, \(A\)có GTNN là 2 khi\(x=2014\)

9 tháng 12 2019

Ta có: \(x^2\ge0;\left|x+y\right|\ge0;\forall x,y\)

=> \(M=2015+3\left(x^2+1\right)^{2016}+\left|x+y\right|^{2017}\)

\(\ge2015+3\left(0+1\right)^{2016}+0^{2017}=2018\)

Dấu "=" xảy ra khi và chỉ khi: \(\hept{\begin{cases}x^2=0\\\left|x+y\right|=0\end{cases}\Leftrightarrow x=y=0}\)

Vậy gtnn của M = 2018 đạt tại x = y = 0.

11 tháng 6 2015

x+2/2013+x+1/2014=x/2015+x-1/2016

7 tháng 4 2017

a) \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|=2007\)

Ta có: \(\left|x-3\right|\ge0\forall x\)

\(\Rightarrow\left(\left|x-3\right|+2\right)^2\ge\left(0+2\right)^2=2^2=4\)

Lại có: \(\left|y+3\right|\ge0\forall y\)

\(\Rightarrow\left(\left|x-3\right|+2\right)^2+\left|y+3\right|\ge4+0=4\)

\(\Rightarrow\left(\left|x-3\right|+2\right)^2+\left|y+3\right|+2007\ge4+2007=2011\)

 \(\Rightarrow P_{MIN}=2011\)

Dấu "=" xảy ra khi \(\Leftrightarrow\orbr{\begin{cases}\left|x-3\right|=0\\\left|y+3\right|=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\y=-3\end{cases}}}\)

Vậy \(P_{MIN}=2011\) tại \(\orbr{\begin{cases}x=3\\y=-3\end{cases}}\)

3 tháng 7 2016

\(\frac{x+1}{2015}+\frac{x+2}{2014}=\frac{x+3}{2013}+\frac{x+4}{2012}\)

\(=>\frac{x+1}{2015}+1+\frac{x+2}{2014}+1=\frac{x+3}{2013}+1+\frac{x+4}{2012}+1\)

\(=>\frac{x+2016}{2015}+\frac{x+2016}{2014}=\frac{x+2016}{2013}+\frac{x+2016}{2012}\)

\(=>\left(\frac{x+2016}{2015}+\frac{x+2016}{2014}\right)-\left(\frac{x+2016}{2013}+\frac{x+2016}{2012}\right)=0\)

\(=>\left(x+2016\right).\left[\left(\frac{1}{2015}+\frac{1}{2014}\right)-\left(\frac{1}{2013}+\frac{1}{2012}\right)\right]=0\)

\(=>\orbr{\begin{cases}x+2016=0\\\left(\frac{1}{2015}+\frac{1}{2014}\right)-\left(\frac{1}{2013}+\frac{1}{2012}\right)=0\end{cases}}\)

Do 1/2015 + 1/2014 < 1/2013 + 1/2012

=> (1/2015 + 1/2014) - (1/2013 + 1/2012) khác 0

=> x - 2016 = 0

=> x = 2016

Vậy x = 2016

Ủng hộ mk nha ^_-