K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DT
23 tháng 10 2023

x - y = 2 => x = y + 2 thay vào bt C, ta đc :

C = 2(y+2)^2 - y

= 2(y^2 + 4y + 4) - y

= 2(y^2 + 7/2 .y + 2)

= 2(y+7/4)^2 - 17/8 ≥ -17/8

=> Min = -17/8 tại y = -7/4, x =1/4

26 tháng 6 2017

Câu b mình viết nhầm dấu \(\ge\)đáng lẽ đúng phải là \(\le\)

26 tháng 6 2017

a)

\(A=x^2+y^2-x+6y+10.\)

\(=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+\frac{3}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Vậy \(MinA=\frac{3}{4}\Leftrightarrow\hept{\begin{cases}\left(x-\frac{1}{2}\right)^2=0\\\left(y+3\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y+3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}}}\)

b)

\(B=2x-2x^2-5\)

\(=-2\left(x^2-x+\frac{1}{4}\right)+2.\frac{1}{4}-5\)

\(=-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)

Vậy \(MaxB=-\frac{9}{2}\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)

8 tháng 7 2021

\(a,x^2-x+1\)

\(x^2-x+\left(\frac{1}{2}\right)^2+\frac{3}{4}\)

\(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

\(< =>MIN=\frac{3}{4}\)dấu"=" xảy ra khi \(x=\frac{1}{2}\)

\(b,x^2+y^2-4\left(x+y\right)+16\)

\(x^2+y^2-4x-4y+16\)

\(\left(x^2-4x+4\right)+\left(y^2-4y+4\right)+8\)

\(\left(x-2\right)^2+\left(y-2\right)^2+8\ge8\)

\(MIN=8\)dấu "=" xảy ra  khi \(x=y=2\)

\(2x^2+8x+9\)

\(\left(x^2+8x+16\right)+x^2-7\)

\(\left(x+4\right)^2+x^2-7\ge-7\)

\(< =>MIN=-7\)dấu "=" xảy ra khi \(x=-4\)

25 tháng 7 2018

Ai giúp mik vs

25 tháng 7 2018

Huhu ai giúp vs

8 tháng 6 2021
Đây là lời giải nha. Anh nghĩ nó làm vậy

Bài tập Tất cả

27 tháng 9 2016

a) = 9(x2 - 2.x/2.9 + 1/324) - 9/324 +5

GTNN A = 4,97

b) = (2x +y)2 + y2 + 2018

GTNN B = 2018 khi x=0;y=0

c) = -4(x2 - 2.3x/ 4.2 + 9/16) +9/16 +10

GTLN C = 169/16

d) = -(x-y)2 - (2x +1) +1 + 2016

GTLN D = 2017

(trg bn cho bài khó dữ z, làm hại cả não tui)

29 tháng 9 2016

cảm ơn nhiều lắm đấy

11 tháng 11 2018

\(A=x^2-4x-1\)

\(=x^2-4x+4-5\)

\(=\left(x-2\right)^2-5\) \(\ge-5\)

Dấu = xảy ra <=> x-2=0 <=> x=2