K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2021

\(y'=3x^2-2x+m\)

\(y'\ge0\Leftrightarrow\left\{{}\begin{matrix}a>0\\\Delta'\le0\end{matrix}\right.\Leftrightarrow1-3m\le0\Leftrightarrow m\ge\dfrac{1}{3}\)

23 tháng 4 2021

\(y'=x^2-2mx+m\)

\(y'\ge0\Leftrightarrow\left\{{}\begin{matrix}a>0\\\Delta'\le0\end{matrix}\right.\Leftrightarrow m^2-m\le0\Leftrightarrow0\le m\le1\)

23 tháng 4 2021

\(y'=-3x^2-6x+m\Rightarrow y''=-6x-6\)

\(y''=0\Leftrightarrow-6x-6=0\Leftrightarrow x=-1\notin\left[0;1\right]\)

\(\left\{{}\begin{matrix}y'\left(0\right)=m\\y'\left(1\right)=m-9\end{matrix}\right.\Rightarrow^{max}_{\left[0;1\right]}y'=y'\left(0\right)=m\)

\(\Rightarrow m=10\)

23 tháng 4 2021

Hoàng Hải Yến hình như có chỗ nào sai sai hiu

23 tháng 4 2021

\(y'=\dfrac{\left(2x-m\right)\left(x^2+1\right)-2x\left(x^2-mx+m\right)}{\left(x^2+1\right)^2}=\dfrac{2x-mx^2-m+2mx^2-2mx}{\left(x^2+1\right)^2}=\dfrac{mx^2+2\left(1-m\right)x-m}{\left(x^2+1\right)^2}\)

\(y'=0\Leftrightarrow mx^2+2\left(1-m\right)x-m=0\)

Xet \(m=0\) ko thoa man pt

Xet \(m\ne0\)

\(\left\{{}\begin{matrix}\Delta'>0\\\dfrac{2\left(m-1\right)}{m}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(1-m\right)^2+m^2>0\left(ld\right)\\m=-2\end{matrix}\right.\Rightarrow m=-2\)

NV
23 tháng 4 2021

\(y'=x^2-2x+m\)

\(y'\ge0\) ; \(\forall x\in\left(1;3\right)\Leftrightarrow x^2-2x+m\ge0\) ;\(\forall x\in\left(1;3\right)\)

\(\Leftrightarrow m\ge\max\limits_{\left(1;3\right)}\left(-x^2+2x\right)\)

Xét hàm \(f\left(x\right)=-x^2+2x\) trên \(\left(1;3\right)\)

\(-\dfrac{b}{2a}=1\) ; \(f\left(1\right)=1\) ; \(f\left(3\right)=-3\)

\(\Rightarrow m\ge1\)

NV
23 tháng 4 2021

\(y'=\dfrac{-m^2-1}{\left(x-m\right)^2}\)

\(y'< 0\) ;\(\forall x\in\left(0;1\right)\Leftrightarrow\left[{}\begin{matrix}m\ge1\\m\le0\end{matrix}\right.\)

23 tháng 4 2021

a/ \(y'=3mx^2-2\left(m+1\right)x+3m\)

Xet m=0 ko thoa man

Xet m khac 0

\(y'\ge0\Leftrightarrow\left(m+1\right)^2-9m^2\le0\Leftrightarrow8m^2-2m-1\ge0\)

\(\Leftrightarrow m^2+8\le0\left(vl\right)\) => ko ton tai m thoa man

b/ \(y'=mx^2-2mx+2m-1\)

m=0 ko thoa man

Xet m khac 0

\(y'\ge0\Leftrightarrow\left\{{}\begin{matrix}m>0\\m^2-m\left(2m-1\right)\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>0\\m^2-m\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>0\\\left[{}\begin{matrix}m\ge1\\m\le0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m\ge1\)

 

23 tháng 4 2021

Để anh Lâm giải quyết nốt nhé, toi phải chạy deadline đây :(

NV
23 tháng 4 2021

\(y'=\dfrac{-2m-1}{\left(x-2\right)^2}\)

\(y'< 0\) với mọi x thuộc TXĐ \(\Leftrightarrow-2m-1< 0\Leftrightarrow m>-\dfrac{1}{2}\)

NV
15 tháng 5 2019

Câu 1:

Đặt \(f\left(x\right)=x^3+mx^2+\left(m-3\right)x-1\)

Ta có \(f\left(0\right)=-1\) ; \(f\left(-1\right)=1\)

\(\Rightarrow f\left(0\right).f\left(-1\right)< 0\Rightarrow f\left(x\right)\) có ít nhất 1 nghiệm thuộc \(\left(-1;0\right)\)

Mặt khác \(\left\{{}\begin{matrix}f\left(0\right)=-1< 0\\\lim\limits_{x\rightarrow+\infty}=+\infty\end{matrix}\right.\) \(\Rightarrow f\left(x\right)\) có ít nhất 1 nghiệm thuộc \(\left(0;+\infty\right)\)

\(\left\{{}\begin{matrix}f\left(-1\right)=1>0\\\lim\limits_{x\rightarrow-\infty}=-\infty\end{matrix}\right.\) \(\Rightarrow f\left(x\right)\) có ít nhất 1 nghiệm thuộc \(\left(-\infty;-1\right)\)

Vậy pt đã cho có 3 nghiệm phân biệt với mọi m

Câu 2:

\(f'\left(x\right)=x^2+2\left(m-1\right)x+m+1\)

Để \(f'\left(x\right)\ge0\) \(\forall x\) \(\Leftrightarrow\Delta'=\left(m-1\right)^2-\left(m+1\right)\le0\)

\(\Leftrightarrow m^2-3m\le0\Leftrightarrow0\le m\le3\)

NV
15 tháng 5 2019

Câu 3:

Nhận thấy \(x=0\) không phải nghiệm

\(\Leftrightarrow2x^3+3x^2-2=-mx\)

\(\Leftrightarrow\frac{2x^3+3x^2-2}{x}=-m\)

Đặt \(f\left(x\right)=\frac{2x^3+3x^2-2}{x}\Rightarrow f'\left(x\right)=\frac{\left(6x^2+6x\right)x-\left(2x^3+3x^2-2\right)}{x^2}=\frac{4x^3+3x^2+2}{x^2}\)

\(f'\left(x\right)=\frac{4x^2\left(x+1\right)+2-x^2}{x^2}\Rightarrow f'\left(x\right)>0\) \(\forall x\in\left(-1;1\right)\)

\(\Rightarrow f\left(x\right)\) đồng biến trên \(\left(-1;1\right)\)

\(\lim\limits_{x\rightarrow0^-}f\left(x\right)=+\infty\) ; \(\lim\limits_{x\rightarrow0^+}f\left(x\right)=-\infty\)

\(\Rightarrow y=-m\) luôn cắt đồ thị \(y=f\left(x\right)\) hay phương trình đã cho luôn có ít nhất 1 nghiệm trong khoảng \(\left(-1;1\right)\) với mọi m

3 tháng 9 2020

Giả sử \(y\) nằm giữa \(x\) và \(z\)

\(\Rightarrow\left(y-z\right)\left(y-x\right)\le0\)

\(\Leftrightarrow y^2+zx\le xy+zx\)

\(\Leftrightarrow y^2z+z^2x\le xyz+z^2x\)

\(\Leftrightarrow x^2y+y^2z+z^2x\le x^2y+xyz+z^2x=y.\left(x^2+zx+z^2\right)\)

Nên : \(P\le y.\left(x^2+zx+z^2\right)\le y.\left(x+z\right)^2\)

\(=\frac{1}{2}.2y.\left(x+z\right).\left(x+z\right)\le\frac{1}{2}.\left[\frac{2y+x+z+x+z}{3}\right]^3\) \(=\frac{1}{2}\cdot\frac{8}{27}=\frac{4}{27}\)

Dấu "=" xảy ra \(\Leftrightarrow x=0,y=\frac{1}{3},z=\frac{2}{3}\)  và các hoán vị.