K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2016

a)

\(\sqrt{2x+10}+\frac{1}{x^2+4}\)

Căn thức có nghĩa khi 

\(\begin{cases}2x+10\ge0\\x^2-4\ne0\end{cases}\)

\(\Leftrightarrow\begin{cases}x\ge-5\\\begin{cases}x\ne2\\x\ne-2\end{cases}\end{cases}\)

Vật căn thức có nghĩa khi \(x>-6;x\ne\pm2\)

b)

\(\sqrt{\frac{x^2+1}{x-1}}\)

Căn thưc có nghĩa khi

\(\begin{cases}\left(x^2+1\right)\left(x-1\right)\ge0\\x-1\ne0\end{cases}\)

Mà \(x^2+1\ge1\) => x - 1 >0

\(x+1>0\)

\(\Leftrightarrow x>-1\)

30 tháng 3 2020
https://i.imgur.com/iX7y3qX.jpg
30 tháng 3 2020
https://i.imgur.com/GMDpx0f.jpg
4 tháng 7 2021

a,\(\sqrt{\frac{x-3}{4-x}}\)

Biểu thức trên xác định

 \(\Leftrightarrow\frac{x-3}{4-x}\ge0\)

\(\Leftrightarrow\hept{\begin{cases}x-3\ge0\\4-x>0\end{cases}}\)hoặc \(\hept{\begin{cases}x-3\le0\\4-x< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge3\\4>x\end{cases}}\)hoặc \(\hept{\begin{cases}x\le3\\4< x\end{cases}}\)(loại)

Vậy biểu thức trên xác định khi \(3\le x< 4\)

b, \(\sqrt{\frac{x^2+2x+4}{2x-3}}\)

Biểu thức trên xác định \(\Leftrightarrow\frac{x^2+2x+4}{2x-3}\ge0\)

Ta có \(x^2+2x+4=\left(x+1\right)^2+3\ge3\forall x\)nên \(x^2+2x+4>0\forall x\)

=> Biểu thức trên xác định \(\Leftrightarrow2x-3>0\)

                                             \(\Leftrightarrow2x>3\)

                                               \(\Leftrightarrow x>\frac{3}{2}\)

Vậy biểu thức trên xác định khi \(x>\frac{3}{2}\)

a)\(\sqrt{\frac{x-3}{4-x}}\)có nghĩa \(\Leftrightarrow\frac{x-3}{4-x}\ge0\)

\(\Leftrightarrow\hept{\begin{cases}x-3\ge0\\4-x>0\end{cases}}\)hoặc \(\hept{\begin{cases}x-3\le0\\4-x< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge3\\x< 4\end{cases}}\)hoặc \(\hept{\begin{cases}x\le3\\x>4\end{cases}}\)(Vô lí)

\(\Leftrightarrow3\le x< 4\)

b)\(\sqrt{\frac{x^2+2x+4}{2x-3}}\)có nghĩa \(\Leftrightarrow\frac{x^2+2x+4}{2x-3}\ge0\)

\(\Leftrightarrow\hept{\begin{cases}x^2+2x+4\ge0\\2x-3>0\end{cases}}\)hoặc \(\hept{\begin{cases}x^2+2x+4\le0\\2x-3< 0\end{cases}}\)

mà \(x^2+2x+4=\left(x+1\right)^2+2\ge2\forall x\)

nên \(\hept{\begin{cases}\left(x+1\right)^2+2\ge2\\2x-3>0\end{cases}}\)

\(\Leftrightarrow x>\frac{3}{2}\)

9 tháng 10 2016

help me

9 tháng 10 2016

 1,Điều kiện để \(\sqrt{a}\) có nghĩa  là \(a\ge0\)

2,  a, để căn thức  \(\sqrt{2x+6}\) có nghĩa \(\Leftrightarrow2x+6\ge0\)

                                                                 \(\Leftrightarrow2x\ge-6\)

                                                                 \(\Leftrightarrow x\ge-3\)

b, để căn thức \(\sqrt{\frac{-2}{2x-3}}\) có nghĩa \(\Leftrightarrow2x-3\ge0\)

                                                             \(\Leftrightarrow2x\ge3\)

                                                              \(\Leftrightarrow x\ge\frac{3}{2}\)

7 tháng 6 2019

1) \(\frac{1}{\sqrt{2x-1}}\)có nghĩa khi \(\hept{\begin{cases}2x-1\ge0\\\sqrt{2x-1}\ne0\end{cases}}\)

\(\Leftrightarrow2x-1>0\)

\(\Leftrightarrow x>\frac{1}{2}\)

\(\sqrt{5-x}\)có nghĩa khi \(5-x\ge0\Leftrightarrow x\ge5\)

Vậy \(ĐKXĐ:\frac{1}{2}>x\ge5\)

2) \(\sqrt{x-\frac{1}{x}}\)có nghĩa khi \(\hept{\begin{cases}x-\frac{1}{x}\ge0\\x>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{x^2}{x}-\frac{1}{x}\ge0\\x>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{x^2-1}{x}\ge0\\x>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x^2-1\ge0\\x>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x^2\ge1\\x>0\end{cases}}\)

Vậy \(ĐKXĐ:x\ge1\)

3) \(\sqrt{2x-1}\)có nghĩa khi \(2x-1\ge0\) \(\Leftrightarrow x\ge\frac{1}{2}\)

\(\sqrt{4-x^2}\)có nghĩa khi \(4-x^2\ge0\Leftrightarrow x^2\le4\Leftrightarrow x\le2\)

Vậy \(ĐKXĐ:\frac{1}{2}\le x\le2\)

4) \(\sqrt{x^2-1}\)có nghĩa khi \(x^2-1\ge0\Leftrightarrow x^2\ge1\Leftrightarrow x\ge1\)

\(\sqrt{9-x^2}\)có nghĩa khi \(9-x^2\ge0\Leftrightarrow x^2\le9\Leftrightarrow x\le3\)

Vậy \(ĐKXĐ:1\le x\le3\)

27 tháng 10 2021

Trả lời:

\(\sqrt{\frac{2}{x^2-4x+4}}\) có nghĩa \(\Leftrightarrow\hept{\begin{cases}\frac{2}{x^2-4x+4}\ge0\\x^2-4x+4\ne0\end{cases}\Leftrightarrow\frac{2}{x^2-4x+4}>0}\)

\(\Leftrightarrow x^2-4x+4>0\Leftrightarrow\left(x-2\right)^2>0\) với mọi x khác 2

Vậy với mọi x khác 2 thì căn thức có nghĩa