K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2019

ta có số chia là x2-4 nên số dư cảu phép chia sẽ có dạng ax+b

=>f(x)=(x2-4)(-5x)+ax+b

do f(x) chia x+2 dư 10 =>f(-2)=10=>b-2a=10     (1)

vì f(x)chia x-2 dư 22=>f(2)=22=>2a+b=22          (2)

ta lấy (2)-(1) được 2a+b+2a-b=22-10 <=>4a=12 <=>a=3

=>b=16

=>f(x)=(x2-4)(-5x)+3x+16=-5x3+23x+16

vậy f(x)=-5x3+23x+16

16 tháng 12 2016

Do bậc của đa thức chia là 2 nên da thức dư có bậc cao nhất là 1 hay

f(x) = (x2 - 5x + 6)(1 - x2) + ax + b

f(x) chia cho x - 2 dư 2 nên áp dụng định lý bê du ta có khi x = 2 thì f(x) = 2

 2a + b = 2

Tương tự chia cho x - 3 dư 7

=> f(3) = 3a + b = 7

=> a = 5, b = - 8

Thế vô là tìm được f(x)

AH
Akai Haruma
Giáo viên
2 tháng 12 2023

Lời giải:
Gọi dư khi chia $f(x)$ cho $(x-1)(x+2)$ là $ax+b$ (dư phải có bậc nhỏ hơn đa thức chia) 

Khi đó:
$f(x)=5x^2(x-1)(x+2)+ax+b$

Ta có:
$f(1)=a+b=4\Rightarrow a=4-b$

$f(-2)=-2a+b=1$

Thay $a=4-b$ thì: $-2(4-b)+b=1$

$\Rightarrow -8+2b+b=1$

$\Rightarrow 3b=9\Rightarrow b=3$

$a=4-b=4-3=1$

Vậy $f(x)=5x^2(x-1)(x+2)+x+3$

AH
Akai Haruma
Giáo viên
29 tháng 6 2023

Chia $(x+2)(x+5)$ hay $(x+2)(x-5)$ vậy bạn?

29 tháng 6 2023

(x+2)(x-5) ạ, em ghi nhầm 

AH
Akai Haruma
Giáo viên
1 tháng 7 2023

Lời giải:

Gọi $ax+b$ là dư của $F(x)$ khi chia cho $(x+2)(x-5)$

Ta có:

$F(x)=2x(x+2)(x-5)+ax+b(*)$
Theo đề thì $F(-2)=8; F(5)=26$

Thay $x=-2$ vào $(*)$ thì:

$F(-2)=(-2)a+b=8(1)$

$F(5)=5a+b=26(2)$

Từ $(1); (2)\Rightarrow a=\frac{18}{7}; b=\frac{92}{7}$

Khi đó:

$F(x)=2x(x+2)(x-5)+\frac{18}{7}x+\frac{92}{7}$

$=2x^3-6x^2-\frac{122x}{7}+\frac{92}{7}$