Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(f\left(x\right)⋮x-2\) nên \(f\left(x\right)=q.\left(x-2\right)\)
\(\Rightarrow f\left(2\right)=0\Rightarrow8+4a+2b+c=0\) ( 1 )
- \(f\left(x\right):x^2-1\) thì được dư là 2x
\(\Rightarrow f\left(x\right)=r.\left(x^2-1\right)+2x\)
\(\Rightarrow f\left(1\right)=2\) và \(f\left(-1\right)=-2\)
Có: \(f\left(1\right)=2\Rightarrow1+a+b+c=2\) ( 2 )
\(f\left(-1\right)=-2\Rightarrow-1+a-b+c=-2\) ( 3 )
Cộng vế với vế của (2) và (3) ta có: \(2.\left(a+c\right)=0\Rightarrow a+c=0\Rightarrow c=-a\) (4)
Thay \(a+c=0\) vào ( 2 ) ta có: \(1+b+0=2\Rightarrow b=1\)
Thay b = 1 vào ( 1 ) ta có: \(8+4a+2+c=0\Rightarrow4a+c=-10\) ( 5 )
Thay ( 4 ) vào ( 5 ) ta có: \(4a-a=-10\Rightarrow3a=-10\Rightarrow a=\dfrac{-10}{3}\)
\(\Rightarrow c=\dfrac{10}{3}\)
Vậy \(a=\dfrac{-10}{3};b=1;c=\dfrac{10}{3}\)
a)f(x)=-x5-7x4-2x3+x2+4x+9
g(x)=x5+7x4+2x3+2x2-3x-9
b)h(x)=f(x)+g(x)
=(-x5-7x4-2x3+x2+4x+9)+(x5+7x4+2x3+2x2-3x-9)
=-x5-7x4-2x3+x2+4x+9+x5+7x4+2x3+2x2-3x-9
=-x5+x5-7x4+7x4-2x3+2x3+x2+2x2+4x-3x+9-9
=3x2+x
Vậy h(x)=3x2+x
c)ta có h(x)=0
=>3x2+x=0
x(3x+1)=0
x=0 hoặc 3x+1=0
x=0 hoặc x=-1/3
vậy nghiệm của đa thức h(x) là x=0 hoặc x=-1/3
\(f_{\left(x\right)}-g_{\left(x\right)}=2x^5+x^4+1x^2+x+1-\left(2x^5+x^4-x^2+1\right)\)
\(=2x^5+x^4+1x^2+x+1-2x^5-x^4+x^2-1\)
\(=\left(2x^5-2x^5\right)+\left(x^4-x^4\right)+\left(1x^2+x^2\right)+x+\left(1-1\right)\)
\(=2x^2+x\)
+, Đặt \(2x^2+x=0\)
\(\Leftrightarrow x.2x=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x=0\end{cases}}\Leftrightarrow x=0\)
Vì \(x^3-2x^2-x+2=\left(x-1\right)\left(x+1\right)\left(x-2\right)\)nên từ giả thiết ta có:
\(f\left(x\right)=\left(x-1\right)\left(x+1\right)\left(x-2\right)q\left(x\right)+1\)
Suy ra \(\hept{\begin{cases}f\left(1\right)=1&f\left(-1\right)=1&f\left(2\right)=1\end{cases}\Rightarrow\hept{\begin{cases}a+b+c=1\\a-b+c=7\\4a+2b+c=1\end{cases}\Rightarrow}\hept{\begin{cases}a=1\\b=-3\\c=3\end{cases}}}\)
Lời giải:
Gọi $ax+b$ là dư của $F(x)$ khi chia cho $(x+2)(x-5)$
Ta có:
$F(x)=2x(x+2)(x-5)+ax+b(*)$
Theo đề thì $F(-2)=8; F(5)=26$
Thay $x=-2$ vào $(*)$ thì:
$F(-2)=(-2)a+b=8(1)$
$F(5)=5a+b=26(2)$
Từ $(1); (2)\Rightarrow a=\frac{18}{7}; b=\frac{92}{7}$
Khi đó:
$F(x)=2x(x+2)(x-5)+\frac{18}{7}x+\frac{92}{7}$
$=2x^3-6x^2-\frac{122x}{7}+\frac{92}{7}$