K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2017

a, \(\left\{{}\begin{matrix}3\left(2x-1\right)^2\ge0\\7\left(3y+5\right)^2\ge0\end{matrix}\right.\Rightarrow3\left(2x-1\right)^2+7\left(3y+5\right)^2\ge0\)

\(3\left(2x-1\right)^2+7\left(3y+5\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}3\left(2x-1\right)^2=0\\\left(3y+5\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{-5}{3}\end{matrix}\right.\)

Vậy...

b, \(x^2+y^2-2x+10y+26=0\)

\(\Leftrightarrow x^2-2x+1+y^2+10+25=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y+5\right)^2=0\)

\(\left(x-1\right)^2+\left(y+5\right)^2\ge0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+5\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-5\end{matrix}\right.\)

Vậy...

29 tháng 5 2017

thì có ai bắt bn trả lời đâu!

29 tháng 5 2017

mk mới học lớp 5 thôi hỏi lớp 8 lận

17 tháng 7 2017

Ta có : 3(2x - 1)2 \(\ge0\forall x\)

           7(3y + 5)2 \(\ge0\forall x\)

Mà : 3(2x - 1)2 + 7(3y + 5)2 = 0 

Nên : 3(2x - 1)2 = 7(3y + 5)2 = 0 

\(\Leftrightarrow\hept{\begin{cases}3\left(2x-1\right)^2=0\\7\left(3y+1\right)^2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(2x-1\right)^2=0\\\left(3y+1\right)^2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(2x-1\right)=0\\\left(3y+1\right)=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x=1\\3y=-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-\frac{1}{3}\end{cases}}\)

a, \(x^2+y^2-2x+10y+26=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2+10y+25\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y+5\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y+5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-5\end{cases}}\)

b,\(4x^2+2y^2+2xy-2y+1=0\)

\(\Leftrightarrow\left(4x^2+4xy+y^2\right)+\left(y^2-2y+1\right)=0\)

\(\Leftrightarrow\left(2x+y\right)^2+\left(y-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}2x+y=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x+1=0\\y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=1\end{cases}}\)

c,\(5x^2+9y^2-12xy+4x+4=0\)

\(\Rightarrow\left(x^2+4x+4\right)+\left(4x^2-12xy+9y^2\right)=0\)

\(\Rightarrow\left(x+2\right)^2+\left(2x-3y\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x+2=0\\2x-3y=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\2.\left(-2\right)-3y=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\y=-\frac{4}{3}\end{cases}}\)

d,\(5x^2+9y^2-6xy-4x+1=0\)

\(\Rightarrow\left(4x^2-4x+1\right)+\left(x^2-6xy+9y^x\right)=0\)

\(\Rightarrow\left(2x+1\right)^2+\left(x-3y\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}2x+1=0\\x-3y=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-\frac{1}{2}\\-\frac{1}{2}-3y=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-\frac{1}{2}\\y=-\frac{1}{6}\end{cases}}\)

6 tháng 10 2019

Hơi mờ một tí, bạn cố gắng đọc nhá haha

29 tháng 7 2017

a/ \(x^2+xy+y^2+1=\left(x^2+xy+\frac{y^2}{4}\right)+\frac{3y^2}{4}+1=\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}+1>0\)

b/ \(x^2+5y^2+2x-4xy-10y+14\)

\(=\left(x^2-4xy+4y^2\right)+2\left(x-2y\right)+1+\left(y^2-6y+9\right)+4\)

\(=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y-3\right)^2+4\)

\(=\left(x-2y+1\right)^2+\left(y-3\right)^2+4>0\)