Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3 \(\hept{\begin{cases}x+y+xy=2+3\sqrt{2}\\x^2+y^2=6\end{cases}}\)
\(\hept{\begin{cases}\left(x+y\right)+xy=2+3\sqrt{2}\\\left(x+y\right)^2-2xy=6\end{cases}}\)
\(\hept{\begin{cases}S+P=2+3\sqrt{2}\left(1\right)\\S^2-2P=6\left(2\right)\end{cases}}\)
Từ (1)\(\Rightarrow P=2+3\sqrt{2}-S\)Thế P vào (2) rồi giải tiếp nhé. Mình lười lắm ^.^
a, \(x^2+2=2\sqrt{x^2+1}\)
\(\Rightarrow x^2+1-2\sqrt{x^2+1}+1=0\)
\(\Rightarrow\left(\sqrt{x^2+1}-1\right)^2=0\)
\(\Rightarrow\sqrt{x^2+1}-1=0\)\(\Rightarrow x^2+1=1\Rightarrow x=0\)
b,\(x^2+x+2y^2+y=2xy^2+xy+3\)
\(\Rightarrow2xy^2+xy-x^2-x-2y^2-y+3=0\)
\(\Rightarrow2y^2\left(x-1\right)+y\left(x-1\right)-x\left(x-1\right)-2\left(x-1\right)+1=0\)
\(\Rightarrow\left(x-1\right)\left(2y^2+y-x-2\right)=-1=1\cdot\left(-1\right)=\left(-1\right)\cdot1\)
đoạn sau bạn tự giái tiếp nhé
a) \(x^2+2=2\sqrt{x^2+1}\)
\(\Leftrightarrow\left(x^2+2\right)^2=\left(2\sqrt{x^2+1}\right)^2\)
\(\Leftrightarrow x^4+4x^2+4=4x^2+4\)
\(\Leftrightarrow x=0\)
từ pt thứ nhất ta có x + y = 2xy.
đặt xy = t.
pt thứ 2: 2t - t2 = \(\sqrt{\left(t-1\right)^2+1}\) hay \(1-\left(t-1\right)^2=\sqrt{\left(t-1\right)^2+1}\)
đặt a = (t - 1)2.
pt: 1 - a = \(\sqrt{a+1}\) hay a2 -2a + 1 = a + 1 (đk: a \(\le\) 1).
hay a2 - 3a = 0 hay a = 3 (loại) hoặc a = 0.
với a = 0 thì t = 1 hay xy = 1 và x + y = 2.
x, y là nghiệm pt: z2 - 2z + 1 = 0 hay z = 1 hay x= y = 1.