\(36x^2-2xy^2-3y^2+24x=-336\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2018

\(2y^2+2xy+x+3y-13=0\)

\(\Leftrightarrow2y\left(y+x\right)+x+y+2y=13\)

\(\Leftrightarrow\left(x+y\right)\left(2y+1\right)+2y+1=14\)

\(\Leftrightarrow\left(2y+1\right)\left(x+y+1\right)=14\)

Rồi bạn làm từng cặp ra nhé! 

6 tháng 3 2019

VINSCHOOL

27 tháng 5 2017

<=>\(x^2+2x\left(y-1\right)-3y^2+6y-8=0\)

coi phương trình là phương trình bậc 2 theo ẩn x nên ta có

\(\Delta^'=\left(y-1\right)^2+3y^2-6y+8\)

\(\Delta^'=4y^2-8y+9=\left(2y-4\right)^2-7\)

để phương trình có nghiệm x ,y nguyên thì \(\Delta^'=k^2\)

với k là số tự nhiên

\(\left(2y-4\right)^2-7=k^2\Leftrightarrow\left(2y-4+k\right)\left(2y-4-k\right)=7\)

khi đó (2y-4+k) và (2y-4-k) là ước của 7 là (1,7) do đó ta có hệ

\(\hept{\begin{cases}2y-4+k=7\\2y-4-k=1\end{cases}}\Leftrightarrow4y=16\Leftrightarrow y=4\)

với y=4 thay vào ta có 

\(\Delta^'=\left(2.4-4\right)^2-7=9\)

\(\orbr{\begin{cases}x=\left(1-y\right)-3=1-4-3=-6\\x=\left(1-y\right)+3=1-4+3=0\end{cases}}\)

vậy (x,y)= (0,4) hoặc (-6,4)

15 tháng 7 2020

x2 + 2y2 + 2xy + 3y - 4 = 0

<=> 4x2 + 8y2 + 8xy + 12y - 16 = 0

<=> (4x2 + 8xy + 4y2) + (4y2 + 12y + 9) = 25

<=> (2x+  2y)2 +  (2y + 3)2 = 25 = 0 + 52 = 32 + 42

Do x;y là số nguyên và 2y + 3 là số lẻ => (2y + 3)2 thuộc {52; 32}

Xét các TH xảy ra:

+)\(\hept{\begin{cases}2x+2y=0\\2y+3=5\end{cases}}\) <=> \(\hept{\begin{cases}x+y=0\\y=1\end{cases}}\) <=> \(\hept{\begin{cases}x=-1\\y=0\end{cases}}\)

+) \(\hept{\begin{cases}2x+2y=0\\2y+3=-5\end{cases}}\)

+) \(\hept{\begin{cases}2x+2y=4\\2y+3=3\end{cases}}\)

+) \(\hept{\begin{cases}2x+2y=-4\\2y+3=-3\end{cases}}\)

+) \(\hept{\begin{cases}2x+2y=4\\2y+3=-3\end{cases}}\)

+) \(\hept{\begin{cases}2x+2y=-4\\2y+3=3\end{cases}}\)

(Tự tính x;y)

8 tháng 7 2016

Giải PT: \(x^2+3y^2+2xy-8x-16y+23=0\)

\(\Leftrightarrow x^2+y^2+16+2xy-8x-8y+2y^2-8y+7=0\)

\(\Leftrightarrow\left(x+y-4\right)^2+2\left(y^2-4y+4\right)-1=0\)

\(\Leftrightarrow\left(x+y-4\right)^2+2\left(y-2\right)^2-1=0\)

\(\Rightarrow\left(x+y-4\right)^2=-2\left(y-2\right)^2+1\le1\)

Dấu "=" xảy ra khi : \(-2\left(y-2\right)^2=0\Rightarrow y=2\)

\(\Rightarrow\)\(\text{│}x+y-4\text{│}\le1\)

\(\Rightarrow-1\le x+y-4\le1\)

\(\Rightarrow3\le x+y\le5\)

Vậy Bmin=3 khi y=2;x=1

       Bmax=5 khi y=2;x=3

25 tháng 2 2020

Ta có : \(3y^2+1=4x^2\)

\(\Leftrightarrow3y^2=4x^2-1\)

\(\Leftrightarrow3y^2=\left(2x+1\right)\left(2x-1\right)\)

Mà : \(2x+1\) và \(2x-1\) nguyên tố cùng nhau

\(\Rightarrow\hept{\begin{cases}2x-1=3m^2\\2x+1=n^2\end{cases}}\) hoặc \(\Rightarrow\hept{\begin{cases}2x-1=m^2\\2x+1=3n^2\end{cases}}\)

TH 1 : \(\hept{\begin{cases}2x-1=3m^2\\2x+1=n^2\end{cases}}\). Ta có : \(n^2=3m^2+2\equiv2\left(mod3\right)\) ( loại )

TH 2 : \(\hept{\begin{cases}2x-1=m^2\\2x+1=3n^2\end{cases}}\) . Dễ thấy m lẻ \(\Rightarrow m=2k+1\)

Khi đo s: \(2x-1=\left(2k+1\right)^2\) 

\(\Rightarrow x^2=k^2+\left(k+1\right)^2\) ( đpcm )

25 tháng 2 2020

Tại sao 2x+1 và 2x-1 lại nguyên tố cùng nhau vậy bạn?