Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow x^2+4y^2+4xy-2\left(x+2y\right)+1=5-4y^2\)
\(\Leftrightarrow\left(x+2y+1\right)^2=5-4y^2\)
TH1 : \(4y^2=0\)
Pt \(\Leftrightarrow\left(x+2y+1\right)^2=5\)Mà 5 không là số chính phương.
=> Không có số nguyên x nào thỏa mãn.
TH2 : \(4y^2>0\)
Do \(\left(x+2y+1\right)^2\ge0\Rightarrow5\ge4y^2\)
Mà y nguyên
=> \(4y^{2}=4\)
=> y ∈ {1 ; -1}
Với y = 1
=> x + 3 = 1
=> x = -2 (tm)Với y = -1
=> x - 1 = 1
=> x = 2 (tm)Vậy..
từ trường hợp y=1 của bạn có thể giải thành 2 trường hợp của x
Thay y=1 vào \(\left(x+2y-1\right)^2=5-4y^2\)được
\(\left(x+2-1\right)^2=5-4\Leftrightarrow\left(x-1\right)^2=1\Leftrightarrow\left(x-1\right)^2-1=0\Leftrightarrow x\left(x-2\right)=0\)\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
*Trường hợp y=-1
\(\left(x-2-1\right)^2=5-4\Leftrightarrow\left(x-3\right)^2=1\Leftrightarrow\left(x-3\right)^2-1=0\Leftrightarrow\left(x-2\right)\left(x-4\right)=0\)\(\Rightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)
\(x^2+2y^2-3xy+2x-4y+3=0\)
\(\Leftrightarrow\left(x^2-3xy+\frac{9}{4}y^2\right)+2\left(x-\frac{3}{2}y\right)+1-\left(\frac{1}{4}y^2+y+1\right)+3=0\)
\(\Leftrightarrow\left(x-\frac{3}{2}y\right)^2+2\left(x-\frac{3}{2}y\right)+1-\left(\frac{1}{2}y+1\right)^2+3=0\)
\(\Leftrightarrow\left(x-\frac{3}{2}y+1\right)^2-\left(\frac{1}{2}y+1\right)^2=-3\)
\(\Leftrightarrow\left(x-\frac{3}{2}y+1-\frac{1}{2}y-1\right)\left(x-\frac{3}{2}y+1+\frac{1}{2}y+1\right)=-3\)
\(\Leftrightarrow\left(x-2y\right)\left(x-y+2\right)=-3\)
Đến đây tự làm ( Dễ )
\(\Leftrightarrow x^4+y^4+1+2x^2y^2+2y^2+2x^2-5x^2-4y^2-5=0\)
\(\Leftrightarrow x^4+y^4+2x^2y^2-3x^2-2y^2-4=0\)
\(\Leftrightarrow2x^4+2y^4+4x^2y^2-6x^2-4y^2-8=0\)
\(\Leftrightarrow2x^2\left(x^2+y^2\right)+2y^2\left(x^2+y^2\right)-4\left(x^2+y^2\right)-2\left(x^2+4\right)=0\)
\(\Leftrightarrow\left(x^2+y^2\right)\left(x^2+y^2-2\right)-x^2=4\)
\(\Leftrightarrow\left(x^2+y^2-1\right)^2-1-x^2=4\)
\(\Leftrightarrow\left(x^2+y^2-1\right)^2-x^2=4-1=2^2-1^2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-1=2\\x=\pm1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\pm1\\y=\pm\sqrt{2}\end{matrix}\right.\)(KTM)
Vậy pt vô nghiệm.
\(x^2+4y^2+1+4xy-2x-4y+4y^2=5\)
\(\Leftrightarrow\left(x+2y-1\right)^2=5-4y^2\)
Do \(VT\ge0\Rightarrow VP\ge0\Rightarrow5-4y^2\ge0\)
\(\Rightarrow y^2\le\frac{5}{4}\Rightarrow y^2=\left\{0;1\right\}\Rightarrow y=\left\{-1;0;1\right\}\)
Thay lần lượt \(y\) vào ta thấy \(y=\left\{-1;1\right\}\) thỏa mãn, khi đó \(\left[{}\begin{matrix}\left(x-3\right)^2=1\\\left(x+1\right)^2=1\end{matrix}\right.\) \(\Rightarrow x=...\)
sao y=0 lại k thoả mãn ạ