Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
9/xy−1/y=2+3/x⇔9−x=2xy+3y9xy−1y=2+3x⇔9−x=2xy+3y
⇔4xy+2x+6y+3=21⇔4xy+2x+6y+3=21
Do x,y nguyên dương nên ta có
⇔(2y+1)(2x+3)=21⇔2x+3=7 và 2y+1=3
⇔x=2 và y=1
1) Quy luật cứ mũ chẵn 2 số tận cùng là 01 còn mũ lẻ thì 2 số tận cùng là 51
Vậy 2 số tận cùng của 51^51 là 51
2)pt<=> x-2=0 hoặc (x-2)^2=1 <=> x=2 hoặc x=1 hoặc x=3
Vậy trung bìng cộng là 2
4)Pt<=> (x-7)^(x+1)=0 hoặc 1-(x-7)^10=0=> x=7 hoặc x=8 hoặc x=6
Do x là số nguyên tố => x=7 TM
5)3y=2z=> 2z-3y=0
4x-3y+2z=36=> 4x=36=> x=9
=> y=2.9=18=> z=3.18/2=27
=> x+y+z=9+18+27=54
6)pt<=> x^2=0 hoặc x^2=25 <=> x=0 hoặc x=-5 hoặc x=5
7)pt<=> (3x+2)(5x+1)=(3x-1)(5x+7)
Nhân ra kết quả cuối cùng là x=3
8)ta có (3x-2)^5=-243=-3^5
=> 3x-2=-3 => x=-1/3
9)Câu này chưa rõ ý bạn muốn hỏi!
10)2x-3=4 hoặc 2x-3=-4
<=> x=7/2 hoặc x=-1/2
11)x^4=0 hoặc x^2=9
=> x=0 hoặc x=-3 hoặc x=3
Ta có:\(x^3+y^3+z^3=x+y+z+2018\) (1)
\(\implies\) \(\left(x^3-x\right)+\left(y^3-y\right)+\left(z^3-z\right)=2018\)
Mà :\(x^3-x=x\left(x^2-1\right)=x\left(x-1\right)\left(x+1\right)\)
\(y^3-y=y\left(y^2-1\right)=y\left(y-1\right)\left(y+1\right)\)
\(z^3-z=z\left(z^2-1\right)=z\left(z-1\right)\left(z+1\right)\)
Vì x , y , z là các số nguyên:
\(\implies\) \(x\left(x-1\right)\left(x+1\right);y\left(y-1\right)\left(y+1\right);z\left(z-1\right)\left(z+1\right)\) là tích của 3 số nguyên liên tiếp nên chúng chia hết cho 3
Do đó VT(1) luôn chia hết cho 3 mà 2018 không chia hết cho 3
Vậy không có các số nguyên x , y , z nào thỏa mãn yêu cầu bài toán
Xét x=0,y=1 ta có f(1)=f(0)f(1)-f(1)+2 (a)
xét x=1,y=0 ta có f(1)=f(1)f(0)-f(0)+1 (b)
xét x=0,y=0 ta có f(1)=f(0)f(0)-f(0)+2 (c)
Lấy (a)-(b) suy ra f(1)=f(0)+1 thay vào (c) ta được f(0)+1=f(0)f(0)-f(0)+2 <=>f(0).f(0)-2f(0)+1=0 <=> f(0)=1 =>f(1)=f(0)+1=2
xét x=1 ta có f(y+1)=f(1)f(y)-f(y)-1+2=f(y)+1
f(y+1)=f(y)+1=f(y-1)+1+1=...F(y-n)+1+n (n là số tự nhiên)
vậy f(2018)=f(2017+1)=f(2017-2016)+1+2016( lấy n=2016)=f(1)+2017=2019
vậy biểu thức có giá trị là 10.2019+1=20191
Ta có : 25 - y^2 = 9.(x - 2018)^2
Vì 9.(x - 2018)^2 ≥ 0 => 25-y^2 ≥ 0
Mặt khác :
9(x-2018)^2 chia hết cho 3.
=> 25 - y^2 chia hết cho 3
Do đó y^2 phải chẵn.
Vậy pt có nghiệm nguyên (2017;4)
Giải thích các bước giải: