K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2018

6x - 14 / 13 = 5y + 9 / 11 => ( 6x - 14 ) . 11 = ( 5y + 9 ) . 13

                                     =>  66x - 154 = 65y + 117

                                     => 66x - 65y = 154 + 117 

                                     => 66x - 65y = 271

24 tháng 5 2018

Ta có \(\frac{6x-14}{13}=\frac{5y+9}{11}\)

=> \(11\left(6x-14\right)=13\left(5y+9\right)\)

=> \(66x-154=65y+117\)

=> \(66x-65y=117+154\)

=> \(66x-65y=271\)(1)

và \(3x-2y=19\)(2)

Trừ (1) với (2), ta có:

\(63x-63y=252\)

=> \(63\left(x-y\right)=252\)

=> \(x-y=\frac{252}{63}\)

=> \(x-y=4\)

=> x = 4 + y (3)

Thế (3) vào (2), ta có:

\(3\left(4+y\right)-2y=19\)

=> \(12+3y-2y=19\)

=> \(12+y=19\)

=> \(y=7\)

=> \(x=4+7=11\)

Vậy \(\hept{\begin{cases}x=11\\y=7\end{cases}}\)thì thoả mãn điều kiện \(\hept{\begin{cases}\frac{6x-14}{13}=\frac{5y+9}{11}\\3x-2y=19\end{cases}}\).

19 tháng 11 2017

\(\frac{6x-14}{13}=\frac{5y+9}{11}\)

\(\Rightarrow\left(6x-14\right).11=\left(5y+9\right).13\)

\(\Rightarrow66x-154=65y+117\)

\(\Rightarrow66x-65y=117+154\)

\(\Rightarrow66x-65y=271\)

Ta có 6x−1413 =5y+911  và 3x−2y=19

6x−1413 =5y+911 

⇒(6x−14).11=(5y+9).13

⇒66x−154=65y+117

⇒66x−65y=117+154

19 tháng 11 2017

\(\dfrac{6x-14}{13}=\dfrac{5y+9}{11}\Leftrightarrow11\left(6x-14\right)=13\left(5y+9\right)\)

\(\Rightarrow66x-154=65y+117\)

\(\Rightarrow66x=65y+117+154\)

\(\Rightarrow66x=65y+271\left(1\right)\)

Từ \(3x-2y=19\Leftrightarrow66x-44y=418\Leftrightarrow66x=44y+418\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\) ta có:

\(65y+271=44y+418\)

Tới đây bí T^T bucminhMong A Hung đừng đánh e zì tội ăn cắp bản quyền :))

4 tháng 6 2017

Cho tam giác ABC có S = 36cm2. Lấy H thuộc cạnh AB sao cho AH = 1/3x AB. Lấy I thuộc cạnh AC sao cho AI = 1/3x AC. Tính S IHC

Làm ơn giải theo cách lớp 6 giùm. Ví dụ:

Xét tam giác............

Có chiều cao hạ từ đỉnh..........

=>.............

6 tháng 6 2017

No Del mày điên à

Bài 1: 

Ta có: \(3x=2y\)

nên \(\dfrac{x}{2}=\dfrac{y}{3}\)

mà x+y=-15

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{-15}{5}=-3\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{x}{2}=-3\\\dfrac{y}{3}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-9\end{matrix}\right.\)

Vậy: (x,y)=(-6;-9)

Bài 2: 

a) Ta có: \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}\)

mà x+y-z=20

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y-z}{4+3-5}=\dfrac{20}{2}=10\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{x}{4}=10\\\dfrac{y}{3}=10\\\dfrac{z}{5}=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40\\y=30\\z=50\end{matrix}\right.\)

Vậy: (x,y,z)=(40;30;50)

3 tháng 4 2018

Ta có : \(\frac{5z-6y}{4}=\frac{6x-4z}{5}=\frac{4y-5x}{6}\)

\(\Leftrightarrow\frac{20z-24y}{4^2}=\frac{30x-20z}{5^2}=\frac{24y-30x}{6^2}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có :

\(\frac{20z-24y}{4^2}=\frac{30x-20z}{5^2}=\frac{24y-30x}{6^2}=\frac{20z-24y+30x-20z+24y-30x}{4^2+5^2+6^2}\)

\(=\frac{0}{4^2+5^2+6^2}=0\)

\(\Rightarrow\hept{\begin{cases}20z=24y\\30x=20z\\24y=30x\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}5z=6y\\6x=4z\\4y=5x\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{z}{6}=\frac{y}{5}\\\frac{x}{4}=\frac{z}{6}\\\frac{y}{5}=\frac{x}{4}\end{cases}}\)

\(\Leftrightarrow\frac{x}{4}=\frac{y}{5}=\frac{z}{6}\)

\(\Leftrightarrow\frac{3x}{12}=\frac{2y}{10}=\frac{5z}{30}\)

Sau đó, áp dụng tính chất của dãy tỉ số bằng nhau là được nhé.

6 tháng 10 2017

giải hộ mình