Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{6x-14}{13}=\frac{5y+9}{11}\)
\(\Rightarrow\left(6x-14\right).11=\left(5y+9\right).13\)
\(\Rightarrow66x-154=65y+117\)
\(\Rightarrow66x-65y=117+154\)
\(\Rightarrow66x-65y=271\)
Ta có 6x−1413 =5y+911 và 3x−2y=19
6x−1413 =5y+911
⇒(6x−14).11=(5y+9).13
⇒66x−154=65y+117
⇒66x−65y=117+154
6x - 14 / 13 = 5y + 9 / 11 => ( 6x - 14 ) . 11 = ( 5y + 9 ) . 13
=> 66x - 154 = 65y + 117
=> 66x - 65y = 154 + 117
=> 66x - 65y = 271
Ta có \(\frac{6x-14}{13}=\frac{5y+9}{11}\)
=> \(11\left(6x-14\right)=13\left(5y+9\right)\)
=> \(66x-154=65y+117\)
=> \(66x-65y=117+154\)
=> \(66x-65y=271\)(1)
và \(3x-2y=19\)(2)
Trừ (1) với (2), ta có:
\(63x-63y=252\)
=> \(63\left(x-y\right)=252\)
=> \(x-y=\frac{252}{63}\)
=> \(x-y=4\)
=> x = 4 + y (3)
Thế (3) vào (2), ta có:
\(3\left(4+y\right)-2y=19\)
=> \(12+3y-2y=19\)
=> \(12+y=19\)
=> \(y=7\)
=> \(x=4+7=11\)
Vậy \(\hept{\begin{cases}x=11\\y=7\end{cases}}\)thì thoả mãn điều kiện \(\hept{\begin{cases}\frac{6x-14}{13}=\frac{5y+9}{11}\\3x-2y=19\end{cases}}\).
\(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)
\(\Rightarrow\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}-\dfrac{x+1}{13}-\dfrac{x+1}{14}=0\)
\(\Rightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)
\(\Rightarrow x+1=0\Rightarrow x=-1\)
\(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)
\(\Rightarrow\dfrac{x+4}{2000}+1+\dfrac{x+3}{2001}+1=\dfrac{x+2}{2002}+1+\dfrac{x+1}{2003}+1\)
\(\Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}=\dfrac{x+2004}{2002}+\dfrac{x+2004}{2003}\)
\(\Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)
\(\Rightarrow\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)
\(\Rightarrow x+2004=0\Rightarrow x=-2004\)
a, \(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)
\(\Rightarrow\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}-\dfrac{x+1}{13}-\dfrac{x+1}{14}=0\)
\(\Rightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)
Do \(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\ne0\)
\(\Rightarrow x+1=0\Rightarrow x=-1\)
Vậy x = -1
b, \(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)
\(\Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)
\(\Rightarrow\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)
Vì \(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\ne0\)
\(\Rightarrow x+2004=0\Rightarrow x=-2004\)
Vậy...
a) Ta có:
(x - 1)5 = - 243
=> (x - 1)5 = (-3)5
=> x - 1 = - 3
=> x = -3 + 1
=> x = -2
Vậy x = -2
b) Ta có:
\(\dfrac{x+2}{11}+\dfrac{x+2}{12}+\dfrac{x+2}{13}=\dfrac{x+2}{14}+\dfrac{x+2}{15}\)
\(\Rightarrow\left(x+2\right).\dfrac{1}{11}+\left(x+2\right).\dfrac{1}{12}+\left(x+2\right).\dfrac{1}{13}=\left(x+2\right).\dfrac{1}{14}+\left(x+2\right).\dfrac{1}{15}\)
=> \(\left(x+2\right).\left(\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}\right)=\left(x+2\right).\left(\dfrac{1}{14}+\dfrac{1}{15}\right)\)
=> \(\left(x+2\right).\dfrac{431}{1716}=\left(x+2\right).\dfrac{29}{210}\)
=> \(\left(x+2\right).\dfrac{431}{1716}-\left(x+2\right).\dfrac{29}{210}=0\)
=> (x + 2).(\(\dfrac{431}{1716}-\dfrac{29}{210}\)) = 0
mà \(\dfrac{431}{1716}-\dfrac{29}{210}\) \(\ne\) 0
=> x + 2 = 0
=> x = -2
Vậy x = -2
c) Ta có :
\(\left|3x-2\right|+5x=4x-10\)
=> \(\left|3x-2\right|=4x-5x-10\)
=> \(\left|3x-2\right|=-x-10\)
=> 3x - 2 = -x - 10
hoặc 3x - 2 = -(-x -10)
*) Nếu 3x - 2 = -x - 10
=> 3x + x = -10 + 2
=> 4x = -8
=> x = -2
*) Nếu 3x - 2 = -(-x -10)
=> 3x - 2 = x +10
=> 3x - x = 10 + 2
=> 2x = 12
=> x = 6
Vậy x = -2 hoặc x = 6
Có:
\(\dfrac{x+2}{11}+\dfrac{x+2}{12}+\dfrac{x+2}{13}=\dfrac{x+2}{14}+\dfrac{x+2}{15}\)
\(\Leftrightarrow\dfrac{x+2}{11}+\dfrac{x+2}{12}+\dfrac{x+2}{13}-\dfrac{x+2}{14}-\dfrac{x+2}{15}=0\)
\(\Leftrightarrow\left(x+2\right)\left(\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}-\dfrac{1}{14}-\dfrac{1}{15}\right)=0\)
Dấu "=" xảy ra:
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}-\dfrac{1}{14}-\dfrac{1}{15}=0\end{matrix}\right.\)
Vì \(\left(\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}-\dfrac{1}{14}-\dfrac{1}{15}\right)\ne0\)
\(\Leftrightarrow x-2=0\)
\(\Rightarrow x=0+2=2\)
Vậy \(x=2\).
Học tốt!
\(\dfrac{x+2}{11}+\dfrac{x+2}{12}+\dfrac{x+2}{13}=\dfrac{x+2}{14}+\dfrac{x+2}{15}\)
\(\Rightarrow\left(\dfrac{1}{11}+\dfrac{1}{12}\right)\left(x+2\right)+\dfrac{x+2}{13}=\dfrac{x+2}{14}+\dfrac{x+2}{15}\)
\(\Rightarrow\dfrac{23\left(x+2\right)}{132}+\dfrac{x+2}{13}=\dfrac{x+2}{14}+\dfrac{x+2}{15}\)
\(\Rightarrow\left(\dfrac{23}{132}+\dfrac{1}{13}\right)\left(x+2\right)=\dfrac{x+2}{14}+\dfrac{x+2}{15}\)
\(\Rightarrow\dfrac{431\left(x+2\right)}{1716}=\dfrac{x+2}{14}+\dfrac{x+2}{15}\)
\(\Rightarrow\dfrac{431\left(x+2\right)}{1716}=\left(\dfrac{1}{14}+\dfrac{1}{15}\right)\left(x+2\right)\)
\(\Rightarrow\dfrac{431\left(x+2\right)}{1716}=\dfrac{29\left(x+2\right)}{210}\)
\(\Rightarrow\dfrac{431\left(x+2\right)}{1716}-\dfrac{29\left(x+2\right)}{210}=0\)
\(\Rightarrow\left(\dfrac{431}{6.286}-\dfrac{29}{6.35}\right)\left(x+2\right)=0\)
\(\Rightarrow\dfrac{1}{6}\left(\dfrac{431}{286}-\dfrac{29}{35}\right)\left(x+2\right)=-2\)
a) \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\)
Từ \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\Rightarrow\dfrac{x^3}{2^3}=\dfrac{y^3}{4^3}=\dfrac{z^3}{6^3}\)
\(\Leftrightarrow\dfrac{x^2}{2^2}=\dfrac{y^2}{4^2}=\dfrac{z^2}{6^2}\Leftrightarrow\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}=\dfrac{x^2+y^2+z^2}{4+16+36}=\dfrac{14}{56}=\dfrac{1}{4}\)
\(\Rightarrow\dfrac{x^2}{4}=\dfrac{1}{4}\Rightarrow x^2=\dfrac{1}{4}\cdot4\Rightarrow x^2=1\Rightarrow x=1\)
\(\dfrac{y^2}{16}=\dfrac{1}{4}\Rightarrow y^2=\dfrac{1}{4}\cdot16\Rightarrow y^2=4\Rightarrow y=2\)
\(\dfrac{z^2}{36}=\dfrac{1}{4}\Rightarrow z^2=\dfrac{1}{4}\cdot36\Rightarrow z^2=9\Rightarrow z^2=3\)
Xin lỗi mình chỉ làm được câu a)
a, \(\left(x-1\right)^5=-243\)
\(\Leftrightarrow\left(x-1\right)^5=-3^5\)
\(\Leftrightarrow x-1=-3\Leftrightarrow x=-2\)
b,\(\dfrac{x+2}{11}+\dfrac{x+2}{12}+\dfrac{x+2}{13}=\dfrac{x+2}{14}+\dfrac{x+2}{15}\)
\(\dfrac{x+2}{11}+\dfrac{x+2}{12}+\dfrac{x+2}{13}-\dfrac{x+2}{14}-\dfrac{x+2}{15}=0\)
\(\Leftrightarrow\left(x+2\right).\left(\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}-\dfrac{1}{14}-\dfrac{1}{15}\right)=0\)
\(do\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}-\dfrac{1}{14}-\dfrac{1}{15}\ne0\)
\(\Rightarrow x+2=0\Leftrightarrow x=-2\)
c, \(x-2\sqrt{x}=0\Leftrightarrow\sqrt{x^2}-2\sqrt{x}=0\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\\sqrt{x}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=\sqrt{2}\end{matrix}\right.\)
Bài 1:
Ta có: \(3x=2y\)
nên \(\dfrac{x}{2}=\dfrac{y}{3}\)
mà x+y=-15
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{-15}{5}=-3\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{2}=-3\\\dfrac{y}{3}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-9\end{matrix}\right.\)
Vậy: (x,y)=(-6;-9)
Bài 2:
a) Ta có: \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}\)
mà x+y-z=20
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y-z}{4+3-5}=\dfrac{20}{2}=10\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{4}=10\\\dfrac{y}{3}=10\\\dfrac{z}{5}=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40\\y=30\\z=50\end{matrix}\right.\)
Vậy: (x,y,z)=(40;30;50)
a: -1/6; 0/2; 2/5
b: Gọi mẫu là x
Theo đề, ta có: \(\dfrac{-9}{11}< \dfrac{7}{x}< \dfrac{-9}{13}\)
\(\Leftrightarrow\dfrac{-63}{77}< \dfrac{-63}{-9x}< \dfrac{-63}{91}\)
\(\Leftrightarrow\dfrac{63}{77}>\dfrac{63}{-9x}>\dfrac{63}{91}\)
=>77<-9x<91
\(\Leftrightarrow-9x\in\left\{81;90\right\}\)
hay \(x\in\left\{-9;-10\right\}\)
\(\dfrac{6x-14}{13}=\dfrac{5y+9}{11}\Leftrightarrow11\left(6x-14\right)=13\left(5y+9\right)\)
\(\Rightarrow66x-154=65y+117\)
\(\Rightarrow66x=65y+117+154\)
\(\Rightarrow66x=65y+271\left(1\right)\)
Từ \(3x-2y=19\Leftrightarrow66x-44y=418\Leftrightarrow66x=44y+418\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\) ta có:
\(65y+271=44y+418\)
Tới đây bí T^T Mong A Hung đừng đánh e zì tội ăn cắp bản quyền :))
hi