Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{5}{x+3}-\frac{2}{3-x}-\frac{3x^2-2x-9}{x^2-9}\)
a) ĐKXĐ: \(\hept{\begin{cases}x+3\ne0\\3-x\ne0\\x^2-9\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne-3\\x\ne3\\x\ne3;x\ne-3\end{cases}}}\)
Vậy ĐKXĐ: x khác -3; x khác 3 ( b vào tcn của mìnk để thấy chi tiết)
Rút gọn:
\(A=\frac{5}{x+3}-\frac{2}{3-x}-\frac{3x^2-2x-9}{x^2-9}\)
\(\Leftrightarrow A=\frac{5}{x+3}+\frac{2}{x-3}-\frac{3x^2-2x-9}{\left(x-3\right)\left(x+3\right)}\) MTC: (x-3)(x+3)
\(\Leftrightarrow A=\frac{5\left(x-3\right)+2\left(x+3\right)-\left(3x^2-2x-9\right)}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow A=\frac{5x-15+2x+6-3x^2+2x+9}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow A=\frac{9x-3x^2}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow A=\frac{3x\left(3-x\right)}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow A=\frac{-3x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{-3x}{x+3}\)
Vậy A=-3x/x+3 với x khác 3 và x khác -3
b) |x-2|=1
Bỏ dấu gt tuyệt đối ta có 2 TH: (đối chiếu đkxđ)
* x-2=1=> x=1+2=>x=3 (o t/m)
*x-2=-1=>x=-1+2=>x=1 (tm)
Thay x=1 vào phân thức A rút gọn ta có:
\(A=\frac{-3x}{x+3}=\frac{-3.1}{1+3}=\frac{-3}{4}\)
Vậy A=-3/4 khi x=1
c) Để A có gt nguyên => A thuộc Z
=> \(A=\frac{-3x}{x+3}\in Z\)
Ta có: -3x chia hết x+3
=> -3(x-3)-9 chia hết x+3
=> -9 chia hết cho x+3
=> x+3 thược Ư(-9)={1;-1;9;-9;3;-3)
Lập bảng thay vào hoặc o cần cx được
x+3 | 1 | -1 | 9 | -9 | 3 | -3 |
x | -2(tm) | -4(tm) | 6(tm) | -12(tm) | 0(tm) | -6(tm) |
Vậy...
câu 1
a)\(ĐKXĐ:x^3-8\ne0=>x\ne2\)
b)\(\frac{3x^2+6x+12}{x^3-8}=\frac{3\left(x^2-2x+4\right)}{\left(x-2\right)\left(x^2-2x+4\right)}=\frac{3}{x-2}\left(#\right)\)
Thay \(x=\frac{4001}{2000}\)zô \(\left(#\right)\)ta được
\(\frac{3}{\frac{4001}{2000}-2}=\frac{3}{\frac{4001}{2000}-\frac{4000}{2000}}=\frac{3}{\frac{1}{2000}}=6000\)
\(M+\frac{2x^2}{\left(3-x\right)\left(x+1\right)}=\frac{2x}{\left(x-1\right)\left(x+1\right)}+\frac{4x}{\left(3-x\right)\left(x+1\right)}\)
\(M=\frac{2x}{\left(x-1\right)\left(x+1\right)}+\frac{4x}{\left(3-x\right)\left(x+1\right)}-\frac{2x^2}{\left(3-x\right)\left(x+1\right)}\)
\(M=\frac{2x\left(3-x\right)}{\left(3-x\right)\left(x-1\right)\text{}\left(x+1\right)}+\frac{4x\left(x-1\right)}{\left(3-x\right)\left(x-1\right)\left(x+1\right)}+\frac{2x^2\left(x-1\right)}{\left(3-x\right)\left(x-1\right)\left(x+1\right)}\)
\(M=\frac{6x-2x^2+4x^2-4x+2x^3-2x^2}{\left(3-x\right)\left(x-1\right)\left(x+1\right)}\)
\(M=\frac{2x^3-2x}{\left(3-x\right)\left(x-1\right)\left(x+1\right)}\)
\(M=\frac{2x\left(x-1\right)}{\left(3-x\right)\left(x-1\right)\left(x+1\right)}\)
\(M=\frac{2x}{\left(3-x\right)\left(x+1\right)}\)
có gì sai sót bạn bỏ qua
Học tốt
Gợi ý thôi nhé
a: x^2 - 5x + 8 = x^2 - 3x - 2x + 6 + 2 = (x-3).(x-2) + 2
=> Phân thức sẽ nguyên khi 2/(x-3) nguyên (Do x-3 nguyên bởi x nguyên)
<=> x-3 thuộc Ư(2) do x nguyên
Các câu khác thì cứ làm sao cho nó thành đa thức như thế
- Để B có giá trị nguyên thì 2x-5 chia het 3x-9
=> 6x-15 chia hết 3x-9
=> 6x-18+18-15 chia hết 3x-9
=> 2.[3x-9]+3 chia hết 3x-9
=> 3 chia hết cho 3x-9
=> \(3x-9\inƯ\left[3\right]=\left\{-1;1;3;-3\right\}\)
=> \(x\in\left\{4;2\right\}\)
- Để A có giá trị nguyên thì 3x-4 chia het 2+x
=> 3x-4 chia hết x+2
=> 3x+6-6-4 chia hết x+2
=> 3.[x+2] -6-2 chia hết x+2
=> -8 chia hết x+2
=> \(x+2\inƯ\left[-8\right]=\left\{-1;1;2;-2;4;-4;-8;8\right\}\)
=> \(x\in\left\{-3;-1;0;-4;2;-6;-10;6\right\}\)
a) Gọi biểu thức trên là A. Để A nguyên thì \(5⋮2x+1\Leftrightarrow2x+1\inƯ\left(5\right)=\left(\pm1;\pm5\right)\)
Ta có bảng:
Do vậy \(x=\left\{-3;-1;0;2\right\}\)
b) Đặt \(A=\frac{x^3-3x^2+5}{x+2}=\frac{x^3+2x^2-5x^2-10x+10x+20-15}{x+2}\)
\(=\frac{x^2.\left(x+2\right)-5x.\left(x+2\right)+10.\left(x+2\right)-15}{x+2}=\frac{\left(x+2\right).\left(x^2-5x+10\right)-15}{x+2}\)
\(=x^2-5x+10+\frac{15}{x+2}\)
Để A nguyên
=> 15/x+2 nguyên ( do x nguyên nên x2 -5x + 10 cũng nguyên)
=> 15 chia hết cho x + 2
=> x + 2 thuộc Ư(15)={1;-1;3;-3;5;-5;15;-15}
...
bn tự xét nha