Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x=\(\dfrac{5.6}{-10}=-3.\)
b) y=\(\dfrac{3.77}{-33}=-7.\)
a) \(x\)=1 \(y\)= 12
b)\(x\)=4 \(y\)= 14
hoặc \(x\)= 6 \(y \)=21
...
a) x.21=6.7
x.21=42
x=42:21
x = 2
b) y . 20 = -5.28
y.20 = -140
y = (-140) : 20
y = -7
a)=>x*21=7*6
=>x*21=42
=>x=42/21
x=2
b)=>y*20=(-5)*28
=>y*20=-140
=>y=-140/20
y=-7
\(\frac{27}{4}=\frac{-x}{3}=>x=-\frac{81}{4}\notinℤ\)
\(^{y^2=\frac{4}{9}=\left(\frac{2}{3}\right)^2=>y=\pm\frac{2}{3}\notinℤ}\)
\(\frac{27}{4}=\frac{\left(z+3\right)}{-4}=\left(z+3\right)=-27=\left(-3\right)^3=>z+3=-3=>z=-6\)
\(+)|t|-2=-54=>|t|=-52\)(vô lí)
\(+)|t|-2=54=>|t|=56=>t=\pm56\)
a, \(\dfrac{3}{x}+\dfrac{y}{3}=\dfrac{5}{6}\)
ta có: \(\dfrac{3}{x}+\dfrac{y}{3}=\dfrac{5}{6}=>\dfrac{3}{x}=\dfrac{5}{6}-\dfrac{y}{3}=\dfrac{5-2y}{6}\)
=>\(\dfrac{3}{x}=\dfrac{5-2y}{6}=>x.\left(5-2y\right)=3.6=18\)
=> x và 5-2y thuộc Ư của 18={1,-1,2,-2,3,-3,6,-6}
vì 5-2y là số lẻ=> 5-2y= +-1 hoặc 5-2y=+-3
xét bảng
5-2y | 1 | -1 | 3 | -3 |
y | 2 | 3 | 1 | 4 |
x | 18 | -18 | 6 | -6 |
vậy giá trị x,y cần tìm là: {x=18.y=2}
{x=-18.y=3}
{x=6, y=1}Ư
{x=-6,y=4}
x=\(\dfrac{-4.\left(-10\right)}{8}=5\).
y=\(\dfrac{-10.\left(-7\right)}{5}=14.\)
z=\(\dfrac{-7.\left(-24\right)}{14}=12.\)
Giải :
\(\dfrac{x-3}{y-2}=\dfrac{3}{2}\) nên 2(x-3) = 3(y-2)
Do đó : 2x - 6 = 3y - 6 nên 2x = 3y
\(\Rightarrow\) 2x - 2y = y hay 2(x-y) = y
Nên 2.4 = y
Vậy : \(y=8;x=\dfrac{3y}{2}=\dfrac{3.8}{2}=12\)
\(\dfrac{x-3}{y-2}=\dfrac{3}{2}\)
\(\Rightarrow\left(x-3\right)\cdot2=3\cdot\left(y-2\right)\)
\(\Rightarrow2x-6=3y-6\)
\(\Rightarrow2x=3y\)
\(\Rightarrow\dfrac{x}{y}=\dfrac{3}{2}\)
mà x - y = 4
\(\Rightarrow\left\{{}\begin{matrix}x=4:\left(3-2\right)\cdot3=12\\y=4:\left(3-2\right)\cdot2=8\end{matrix}\right.\)
Lời giải:
$\frac{2}{x}+\frac{y}{3}=\frac{1}{6}$
$\frac{6+xy}{3x}=\frac{1}{6}$
$\frac{2(6+xy)}{6x}=\frac{x}{6x}$
$\Rightarrow 2(6+xy)=x$
$\Rightarrow 12+2xy-x=0$
$12=x-2xy$
$12=x(1-2y)$
$\Rightarrow 1-2y$ là ước của $12$
Mà $1-2y$ lẻ nên $1-2y$ là ước lẻ của $12$
$\Rightarrow 1-2y\in\left\{\pm 1; \pm 3\right\}$
$\Rightarrow y\in\left\{0; 1; 2; -1\right\}$
$\Rightarrow x\in\left\{12; -12; -4; 4\right\}$ (tương ứng)