Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A(x) = ax3 +bx +c
A(-2) =0 => -8a -2b +c =0 hay 8a+2b-c =0 (1)
A(1) =1-5 =-4 => a+b+c =-4 (2)
A(-1) =-1-5 =-6 => -a -b +c = - 6 hay a+b-c =6 (3)
(2)(3) => c = -5 ;a +b =1 (4)
(1)(4) => 6a +2.1+5 =0=>a =-7/6 => b = 1- a = 1 +7/6 =13/6
Vậy a =-7/6 ; b =13/6 ; c =-5
Sai sao lẻ nhỉ
F(-2)=0=> -8a+4b+c=0 (1)
f(1)=6=> a+b+c=6 (2)
f(-1)=4=> -a+b+c=4 (3)
(2) trừ (3)=> 2a=2=> a=1; thay vào (3)=> c=5-b thay vào (1)
-8+4b+5-b=0=> b=1
\(\left\{{}\begin{matrix}a=-1\\b=1\\c=4\\f\left(x\right)=-x^3+x^2+4\end{matrix}\right.\)
Giải:
Gọi q(x); g(x) lần lượt là thương của phép chia f(x) cho x-2; f(x) cho x^2-1
=> f(x)= q(x)(x-2)
và f(x)= g(x)(x^2-1) + 2x
=> f(2) = 8+4a+2b+c=0
f(1)= 1+a+b+c=2
f(-1)= -1+a-b+c= -2
từ các hệ thức trên ta tìm được: a= -10/3; b= 1;c=10/3
Em tham khảo bài có cách làm tương tự ở link dưới đây:
Câu hỏi của Đặng Tuấn Anh - Toán lớp 9 - Học toán với OnlineMath
Giải:
Từ giả thiết ta có:
\(\hept{\begin{cases}f\left(x\right)=\left(x+2\right)q_1\left(x\right)\\\\f\left(x\right)=\left(x^2-1\right)q_2\left(x\right)+x\end{cases}}\)
Suy ra \(\hept{\begin{cases}f\left(-2\right)=0\\f\left(1\right)=1\\f\left(-1\right)=-1\end{cases}\Rightarrow\hept{\begin{cases}32+4a-2b+c=0\\2+a+b+c=1\\2+a-b+c=-1\end{cases}}\Rightarrow\hept{\begin{cases}a=-\frac{28}{3}\\b=1\\c=\frac{22}{3}\end{cases}}}\)
Đặt f(x) = 2x4+ax2+bx+c
Áp dụng định lí Be - du ta có: r = f(x)
=> {r=f(2)r=f(1)r=f(−1)
Thay x = 2; 1; -1 lần lượt vào f(x) ta được:
{f(2)=32+4a+2b+cf(1)=2+a+b+cf(−1)=2+a−b+c
Mà {f(x)⋮(x−2)f(x)chia(x2−1)dư2x => {32+4a+2b+c=02+a+b+c=22+a−b+c=−2
=> {4a+2b+c=−32(1)a+b+c=0(2)a−b+c=−4(3)
Trừ (2) cho (3) ta được: 2b=4 => b = 2
=> {4a+c=−36(4)a+c=−2(5)
Trừ (4) cho (5) ta được: 3a=−34 => a = −343 => c = 283
Vậy a = −343 ; b = 2 ; c = 283
P/s: Hi vọng bn hiểu!
Bạn xem ở http://diendan.hocmai.vn/showthread.php?t=347821
=> \(f\left(x\right)=\left(x+2\right)a\left(x\right)\)và \(f\left(x\right)=\left(x^2-1\right)b\left(x\right)+\left(x+5\right)\)
=> \(f\left(-2\right)=0\)
\(f\left(1\right)=1+5=6\)
\(f\left(-1\right)=-1+5=4\)
=> \(f\left(2\right)=8a-2b+c=0\)
\(f\left(1\right)=a+b+c=6\)
\(f\left(-1\right)=-a-b+c=4\)
Đến đây rồi bạn tự làm nhé