Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Ta có : \(\dfrac{2a}{3}=\dfrac{3b}{4}=\dfrac{4c}{5}\)
\(\Leftrightarrow\dfrac{a}{\dfrac{3}{2}}=\dfrac{b}{\dfrac{4}{3}}=\dfrac{c}{\dfrac{5}{4}}=\dfrac{a+b+c}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Khi đó \(a=12.\dfrac{3}{2}=18;b=12.\dfrac{4}{3}=16;c=12.\dfrac{5}{4}=15\)
Vậy (a,b,c) = (18,16,15)
Câu a, b, c giống dạng nhau nên mình làm một câu a và câu d thôi nha, bạn tham khảo ^^
Giải:
a) \(a=\dfrac{b}{2}=\dfrac{c}{3}\)
Áp dụng tính chất của dãy tỉ sô bằng nhau:
\(a=\dfrac{b}{2}=\dfrac{c}{3}=\dfrac{a-b+c}{1-2+3}=\dfrac{10}{2}=5\)
\(\Rightarrow\left\{{}\begin{matrix}a=5.1=5\\b=2.5=10\\c=3.5=15\end{matrix}\right.\)
b) \(a:b:c=3:4:5\)
\(\Rightarrow\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}\)
\(\Rightarrow\dfrac{a^2}{9}=\dfrac{b^2}{16}=\dfrac{c^2}{25}\)
\(\Rightarrow\dfrac{2a^2}{18}=\dfrac{2b^2}{32}=\dfrac{3c^2}{75}\)
Áp dụng tính chất của dãy tỉ sô bằng nhau:
\(\Rightarrow\dfrac{2a^2}{18}=\dfrac{2b^2}{32}=\dfrac{3c^2}{75}=\dfrac{2a^2+2b^2-3c^2}{18+32-75}=\dfrac{-100}{-25}=4\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^2=\dfrac{4.18}{2}=36\\b^2=\dfrac{4.32}{2}=64\\c^2=\dfrac{4.75}{3}=100\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=\pm6\\b=\pm8\\c=\pm10\end{matrix}\right.\)
\(\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{3c}{12}=\dfrac{a+2b-3c}{2+6-12}=\dfrac{-20}{-4}=5\Rightarrow a=10;b=15;c=20.\)
Theo đề bài,có: \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\)và \(a+2b-3c=-20\)
\(\Rightarrow\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{3c}{12}và\) \(a+2b-3c=-20\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{3c}{12}=\dfrac{a+2b-3c}{2+6-12}=\dfrac{-20}{-4}=5\)
Với \(\dfrac{a}{2}=5\Rightarrow a=10\)
\(\dfrac{2b}{6}=5\Rightarrow\dfrac{b}{3}=5\Rightarrow b=15\)
\(\dfrac{3c}{12}=5\Rightarrow\dfrac{c}{4}=5\Rightarrow c=20\)
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{a+2b-3c}{2+2\cdot3-3\cdot4}=\dfrac{-20}{-4}=5\\ \Rightarrow\left\{{}\begin{matrix}a=10\\b=15\\c=20\end{matrix}\right.\)
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{2b}{6}=\dfrac{3c}{12}=\dfrac{a+2b-3c}{2+6-12}=\dfrac{-20}{-4}=5\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{2}=5\\\dfrac{b}{3}=5\\\dfrac{c}{4}=5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=10\\b=15\\c=20\end{matrix}\right.\)
`a/2 = b/3 = c/4`
`=> a/2 = (2b)/6 = (3c)/12`
mà `a+2b-3c=-20`
áp dụng tính chất dãy tỉ số bằng nhau ta có
` a/2 = (2b)/6 = (3c)/12 = (a+2b-3c)/(2+6-12)=(-20)/-4 = 5`
` => a=5xx2=10`
`b=5xx3=15`
`c=5xx4=20`
Bài 1:
a) Có: 4a = 3b => \(\dfrac{a}{3}=\dfrac{b}{4}\) => \(\dfrac{a}{15}=\dfrac{b}{20}\)
7b = 5c => \(\dfrac{b}{5}=\dfrac{c}{7}\) => \(\dfrac{b}{20}=\dfrac{c}{28}\)
=> \(\dfrac{a}{15}=\dfrac{b}{20}=\dfrac{c}{28}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{15}=\dfrac{b}{20}=\dfrac{c}{28}=\dfrac{2a+3b-c}{30+60-28}=\dfrac{186}{62}=3\)
=> \(\left\{{}\begin{matrix}a=45\\b=60\\c=84\end{matrix}\right.\)
b) Tương tự câu a
c) Đặt \(\dfrac{a-1}{2}=\dfrac{b-2}{3}=\dfrac{c-3}{4}=k\)
=> \(\left\{{}\begin{matrix}a=2k+1\\b=3k+2\\c=4k+3\end{matrix}\right.\)
Mà a - 2b + 3c = 14 => 2k + 1 - 6k - 4 + 12k + 9 = 8k + 6 = 14 => k = 1
=> \(\left\{{}\begin{matrix}a=3\\b=5\\c=7\end{matrix}\right.\)
d) Từ a:b:c = 3:4:5 => \(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}\)
Đặt \(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=k\)
=> \(\left\{{}\begin{matrix}a=3k\\b=4k\\c=5k\end{matrix}\right.\)
Mà 2a2 + 2b2 - 3c2 = -100 => 18k2 + 32k2 - 75k2 = -100 => k2 = 4 => k = \(\pm\)2
Với k = 2 => \(\left\{{}\begin{matrix}a=6\\b=8\\c=10\end{matrix}\right.\)
Với k = -2 => \(\left\{{}\begin{matrix}a=-6\\b=-8\\c=-10\end{matrix}\right.\)
Bài 2:
Nửa chu vi hình chữ nhật là: 90:2 = 45 (m)
Tỉ số giữa chiều dài và chiều rộng = \(\dfrac{2}{3}\)=> chiều rộng = \(\dfrac{2}{5}\) nửa chu vi
=> chiều rộng = 18(m) => chiều dài = 27(m)
3.
Ta có: \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\Leftrightarrow\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{3c}{12}\) và \(a+2b-3c=-20\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{3c}{12}=\dfrac{a+2b-3c}{2+6-12}=\dfrac{-20}{-4}=5\)
+) \(\dfrac{a}{2}=5\Rightarrow a=5.2=10\)
+) \(\dfrac{2b}{6}=5\Rightarrow2b=5.6=30\Rightarrow b=30:2=15\)
+) \(\dfrac{3c}{12}=5\Rightarrow3c=5.12=60\Rightarrow c=60:3=20\)
Vậy ...
3.
ta có:\(\dfrac{a}{2}\)=\(\dfrac{b}{3}\)=\(\dfrac{c}{4}\)=>\(\dfrac{a}{2}\)=\(\dfrac{2b}{6}\)=\(\dfrac{3c}{12}\) và a+2b-3c=-20
áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\dfrac{a}{2}\)=\(\dfrac{2b}{6}\)=\(\dfrac{3c}{12}\)=\(\dfrac{a+2b-3c}{2+6-12}\)\(\dfrac{-20}{-4}\)=5
vì\(\dfrac{a}{2}\)=5=>a=2.5=10
\(\dfrac{2b}{6}\)=5=>2b=5.6=30=>b=30:2=15
\(\dfrac{3c}{12}\)=5=>3c=5.12=60=>c=60:3=20
vậy a=10,b=15,c=20
chúc bạn hok tốt
Vì \(\dfrac{a-1}{2}=\dfrac{b-2}{3}=\dfrac{c-3}{4}\)
nên \(\dfrac{a-1}{2}=\dfrac{2b-4}{6}=\dfrac{3c-9}{12}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\dfrac{a-1}{2}=\dfrac{2b-4}{6}=\dfrac{3c-9}{12}=\dfrac{a-1-2b+4+3c-9}{2-6+12}=\dfrac{14-6}{8}=1\)
Do \(\dfrac{a-1}{2}=1\Rightarrow a=3\)
\(\dfrac{2b-4}{6}=1\Rightarrow b=5\)
\(\dfrac{3c-9}{12}=1\Rightarrow c=7\)
Vậy \(\left\{{}\begin{matrix}a=3\\b=5\\c=7\end{matrix}\right..\)
cảm ơn