Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a, b, c giống dạng nhau nên mình làm một câu a và câu d thôi nha, bạn tham khảo ^^
Giải:
a) \(a=\dfrac{b}{2}=\dfrac{c}{3}\)
Áp dụng tính chất của dãy tỉ sô bằng nhau:
\(a=\dfrac{b}{2}=\dfrac{c}{3}=\dfrac{a-b+c}{1-2+3}=\dfrac{10}{2}=5\)
\(\Rightarrow\left\{{}\begin{matrix}a=5.1=5\\b=2.5=10\\c=3.5=15\end{matrix}\right.\)
b) \(a:b:c=3:4:5\)
\(\Rightarrow\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}\)
\(\Rightarrow\dfrac{a^2}{9}=\dfrac{b^2}{16}=\dfrac{c^2}{25}\)
\(\Rightarrow\dfrac{2a^2}{18}=\dfrac{2b^2}{32}=\dfrac{3c^2}{75}\)
Áp dụng tính chất của dãy tỉ sô bằng nhau:
\(\Rightarrow\dfrac{2a^2}{18}=\dfrac{2b^2}{32}=\dfrac{3c^2}{75}=\dfrac{2a^2+2b^2-3c^2}{18+32-75}=\dfrac{-100}{-25}=4\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^2=\dfrac{4.18}{2}=36\\b^2=\dfrac{4.32}{2}=64\\c^2=\dfrac{4.75}{3}=100\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=\pm6\\b=\pm8\\c=\pm10\end{matrix}\right.\)
Tìm các số a, b, c biết rằng :
1 . Ta có: \(\frac{a}{20}=\frac{b}{9}=\frac{c}{6}=\frac{a}{20}=\frac{2b}{9.2}=\frac{4c}{6.4}=\frac{a}{20}=\frac{2b}{18}=\frac{4c}{24}\)
Ap dụng tính chất dãy tỉ số bắng nhau ta dược :
\(\frac{a}{20}=\frac{2b}{18}=\frac{4c}{24}\)=\(\frac{a-2b+4c}{20-18+24}=\frac{13}{26}=\frac{1}{3}\)( do x+2b+4c=13)
Nên : a/20=1/3\(\Leftrightarrow\) a=1/3.20 \(\Leftrightarrow\)a=20/3
b/9=1/3 \(\Leftrightarrow\) b=1/3.9 \(\Leftrightarrow\) b=3
c/6=1/3 \(\Leftrightarrow\) c=1/3.6 \(\Leftrightarrow\) c= 2
i) Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=k\Rightarrow\begin{cases}a=2k\\b=3k\\c=4k\end{cases}\)
Vì a3 + b3 + c3 = 792 => 8k3 + 27k3 + 64k3 = 792 => 99k3 = 792 => k3 = 8 => k = 2
=> \(\begin{cases}a=4\\b=6\\c=8\end{cases}\)
Bài g tương tự bài i
e) Từ 3a = 7b => \(\frac{a}{7}=\frac{b}{3}\)
Đặt \(k=\frac{a}{7}=\frac{b}{3}\Rightarrow\begin{cases}a=7k\\b=3k\end{cases}\)
Vì a2 - b2 = 160 => 49k2 - 9k2 = 160 => 40k2 = 160 => k = 2 hoặc -2
Với k = 2 => \(\begin{cases}a=14\\b=6\end{cases}\)
Với k = -2 => \(\begin{cases}a=-14\\b=-6\end{cases}\)
Bài 1:
Thấy đường cao là a thì cạnh <=> là 1,5a (a > 0)
\(S_{\text{tam giác}}:\frac{1}{2}.a.1,5a=\frac{3}{4}a^2=27\)
\(\Rightarrow a^2=36\Rightarrow a=36\)
1,5a = 9
=> Cạnh tam giác là 9 cm
Đường cao <=> 6 cm
Bài 2:
\(2a=3b;5b=7c\Rightarrow\frac{a}{3}=\frac{b}{2};\frac{b}{7}=\frac{c}{5}\Rightarrow\frac{a}{21}=\frac{b}{14};\frac{b}{14}=\frac{c}{10}\)
\(\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)
Áp dụng t/c dãy tỉ số = nhau, ta có:
\(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}=\frac{3a+5c-7b}{3.21+5.14+7.10}=\frac{30}{15}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{21}=2\Rightarrow a=2.21=42\\\frac{b}{14}=2\Rightarrow b=2.14=28\\\frac{c}{10}=2\Rightarrow c=2.10=20\end{cases}}\)
Vậy:...
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
=>\(a=bk;c=dk\)
1: \(\dfrac{2a+3c}{2b+3d}=\dfrac{2\cdot bk+3\cdot dk}{2b+3d}=\dfrac{k\left(2b+3d\right)}{2b+3d}=k\)
\(\dfrac{2a-3c}{2b-3d}=\dfrac{2bk-3dk}{2b-3d}=\dfrac{k\left(2b-3d\right)}{2b-3d}=k\)
Do đó: \(\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)
2: \(\dfrac{4a-3b}{4c-3d}=\dfrac{4\cdot bk-3b}{4\cdot dk-3d}=\dfrac{b\left(4k-3\right)}{d\left(4k-3\right)}=\dfrac{b}{d}\)
\(\dfrac{4a+3b}{4c+3d}=\dfrac{4bk+3b}{4dk+3d}=\dfrac{b\left(4k+3\right)}{d\left(4k+3\right)}=\dfrac{b}{d}\)
Do đó: \(\dfrac{4a-3b}{4c-3d}=\dfrac{4a+3b}{4c+3d}\)
3: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3bk+5b}{3bk-5b}=\dfrac{b\left(3k+5\right)}{b\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\)
\(\dfrac{3c+5d}{3c-5d}=\dfrac{3dk+5d}{3dk-5d}=\dfrac{d\left(3k+5\right)}{d\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\)
Do đó: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3c+5d}{3c-5d}\)
4: \(\dfrac{3a-7b}{b}=\dfrac{3bk-7b}{b}=\dfrac{b\left(3k-7\right)}{b}=3k-7\)
\(\dfrac{3c-7d}{d}=\dfrac{3dk-7d}{d}=\dfrac{d\left(3k-7\right)}{d}=3k-7\)
Do đó: \(\dfrac{3a-7b}{b}=\dfrac{3c-7d}{d}\)
a)Vì \(\frac{a}{7}=\frac{b}{6}\Rightarrow\frac{a}{35}=\frac{b}{30}\left(1\right)\)
\(\frac{b}{5}=\frac{c}{8}\Rightarrow\frac{b}{30}=\frac{c}{48}\left(2\right)\)
Từ (1) và (2) suy ra:\(\frac{a}{35}=\frac{b}{30}=\frac{c}{48}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\Rightarrow\frac{a}{35}=\frac{b}{30}=\frac{c}{48}=\frac{a}{35}=\frac{2b}{60}=\frac{c}{48}=\frac{a-2b+c}{35-60+48}=\frac{46}{23}=2\)
\(\Rightarrow\begin{cases}\frac{a}{35}=2\\\frac{b}{30}=2\\\frac{c}{48}=2\end{cases}\)\(\Rightarrow\begin{cases}a=70\\b=60\\c=96\end{cases}\)
Vậy a=70;b=60;c=96
Bài 1:
a) Có: 4a = 3b => \(\dfrac{a}{3}=\dfrac{b}{4}\) => \(\dfrac{a}{15}=\dfrac{b}{20}\)
7b = 5c => \(\dfrac{b}{5}=\dfrac{c}{7}\) => \(\dfrac{b}{20}=\dfrac{c}{28}\)
=> \(\dfrac{a}{15}=\dfrac{b}{20}=\dfrac{c}{28}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{15}=\dfrac{b}{20}=\dfrac{c}{28}=\dfrac{2a+3b-c}{30+60-28}=\dfrac{186}{62}=3\)
=> \(\left\{{}\begin{matrix}a=45\\b=60\\c=84\end{matrix}\right.\)
b) Tương tự câu a
c) Đặt \(\dfrac{a-1}{2}=\dfrac{b-2}{3}=\dfrac{c-3}{4}=k\)
=> \(\left\{{}\begin{matrix}a=2k+1\\b=3k+2\\c=4k+3\end{matrix}\right.\)
Mà a - 2b + 3c = 14 => 2k + 1 - 6k - 4 + 12k + 9 = 8k + 6 = 14 => k = 1
=> \(\left\{{}\begin{matrix}a=3\\b=5\\c=7\end{matrix}\right.\)
d) Từ a:b:c = 3:4:5 => \(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}\)
Đặt \(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=k\)
=> \(\left\{{}\begin{matrix}a=3k\\b=4k\\c=5k\end{matrix}\right.\)
Mà 2a2 + 2b2 - 3c2 = -100 => 18k2 + 32k2 - 75k2 = -100 => k2 = 4 => k = \(\pm\)2
Với k = 2 => \(\left\{{}\begin{matrix}a=6\\b=8\\c=10\end{matrix}\right.\)
Với k = -2 => \(\left\{{}\begin{matrix}a=-6\\b=-8\\c=-10\end{matrix}\right.\)
Bài 2:
Nửa chu vi hình chữ nhật là: 90:2 = 45 (m)
Tỉ số giữa chiều dài và chiều rộng = \(\dfrac{2}{3}\)=> chiều rộng = \(\dfrac{2}{5}\) nửa chu vi
=> chiều rộng = 18(m) => chiều dài = 27(m)
thánh nhân xuất hiện đê