Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4. \(1^2+2^2+3^2+...+10^2+11^2=506\)
Ta có: \(2^2+4^2+6^2+...+20^2+22^2\)
\(=2^2.1^2+2^2.2^2+2^2.3^2+...+2^2.10^2+2^2.11^2\)
\(=2^2\left(1^2+2^2+3^2+...+10^2+11^2\right)\)
\(=2^2.506=2024\)
Vậy....
1.
Ta có: \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\)
\(\Rightarrow\dfrac{a^2}{4}=\dfrac{b^2}{9}=\dfrac{c^2}{16}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a^2}{4}=\dfrac{b^2}{9}=\dfrac{c^2}{16}=\dfrac{a^2-b^2+2c^2}{4-9+32}=\dfrac{108}{27}=4\)
\(\Rightarrow a^2=16\)
\(\Rightarrow b^2=36\)
\(\Rightarrow c^2=64\)
\(\Rightarrow a=\pm4\) , \(b=\pm6\) , \(c=\pm8\)
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\Rightarrow\dfrac{a^2}{4}=\dfrac{b^2}{9}=\dfrac{c^2}{16}=\dfrac{2c^2}{32}=\dfrac{a^2-b^2+2c^2}{4-9+32}=\dfrac{108}{27}=4\)
=> a2 = 16
=> a = 4 hoặc a = -4
Thay vào \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\) tìm nốt a, b, c
hjhj, thật ra bài này mik làm đc. mik gửi cho vui thôi
dù gì thì
a)a:b:c=2:4:5 =>\(\dfrac{a}{2}=\dfrac{b}{4}=\dfrac{c}{5}\Rightarrow\dfrac{2a}{4}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{2a-b+c}{4-4+5}=\dfrac{7}{5}\)
=>a=\(2\cdot\dfrac{7}{5}=\dfrac{14}{5}\)
\(b=4\cdot\dfrac{7}{5}=\dfrac{28}{5}\)
\(c=5\cdot\dfrac{7}{5}=7\)
Vậy...
b)\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\Rightarrow\dfrac{a^2}{4}=\dfrac{b^2}{9}=\dfrac{c^2}{16}\)
\(\Rightarrow\dfrac{a^2}{4}=\dfrac{b^2}{9}=\dfrac{2c^2}{32}=\dfrac{a^2-b^2+2c^2}{4-9+32}=\dfrac{108}{27}=4\)
=>a2=16 b2=36 c2=64
=>a=4 b=6 c=8 hoặc a=-4 b=-6 c=-8
Ta có: \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\Rightarrow\left(\dfrac{a}{2}\right)^2=\left(\dfrac{b}{3}\right)^2=\left(\dfrac{c}{4}\right)^2\)
\(\Rightarrow\dfrac{a^2}{4}=\dfrac{b^2}{9}=\dfrac{z^2}{16}\)\(\Rightarrow\dfrac{a^2}{4}=\dfrac{b^2}{9}=\dfrac{2c^2}{32}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a^2}{4}=\dfrac{b^2}{9}=\dfrac{2c^2}{32}=\dfrac{a^2+b^2-2c^2}{4+9-32}=\dfrac{-76}{-19}=4\)
\(\Rightarrow\dfrac{a^2}{4}=4\Rightarrow a=4\)
\(\dfrac{b^2}{9}=4\Rightarrow b=6\)
\(\dfrac{2c^2}{32}=4\Rightarrow2c^c=128\Rightarrow c=8\)
Vậy \(\left\{{}\begin{matrix}a=4\\b=6\\c=8\end{matrix}\right.\)
a = 4 hoặc a = -4
b = 6 hoặc b = -6
c = 8 hoặc c = -8
Ta có:
\(a^2+ab+\dfrac{b^2}{3}=c^2+\dfrac{b^2}{3}+a^2+ac+c^2\)
\(\Rightarrow a^2+ab+\dfrac{b^2}{3}=2c^2+\dfrac{b^2}{3}+a^2+ac\)
\(\Rightarrow ab=2c^2+ac\)
\(\Rightarrow ab+ac=2ac+2c^2\)
\(\Rightarrow a\left(b+c\right)=2c\left(a+c\right)\)
\(\Rightarrow\dfrac{2c}{a}=\dfrac{b+c}{a+c}\left(đpcm\right)\)
a: \(A=\left(5xy-2xy+1.3xy\right)+3x-2y-3.5y^2\)
\(=4.3xy+3x-2y-3.5y^2\)
b: \(B=\left(\dfrac{1}{2}ab^2-\dfrac{1}{2}ab^2-\dfrac{7}{8}ab^2\right)+\left(\dfrac{3}{4}a^2b-\dfrac{3}{8}a^2b\right)\)
\(=-\dfrac{7}{8}ab^2+\dfrac{3}{8}a^2b\)
c: \(C=\left(2a^2b+5a^2b\right)+\left(-8b^2-3b^2\right)+\left(5c^2+4c^2\right)\)
\(=7a^2b-11b^2+9c^2\)
Bài 1:
a: \(=\dfrac{-1}{8}+1-\dfrac{9}{4}-1\)
\(=\dfrac{-1}{8}-\dfrac{18}{8}=\dfrac{-19}{8}\)
b: \(=4\cdot1-2\cdot\dfrac{1}{4}+3\cdot\dfrac{-1}{2}+1\)
\(=4-\dfrac{1}{2}-\dfrac{3}{2}+1\)
=5-2
=3
Câu a, b, c giống dạng nhau nên mình làm một câu a và câu d thôi nha, bạn tham khảo ^^
Giải:
a) \(a=\dfrac{b}{2}=\dfrac{c}{3}\)
Áp dụng tính chất của dãy tỉ sô bằng nhau:
\(a=\dfrac{b}{2}=\dfrac{c}{3}=\dfrac{a-b+c}{1-2+3}=\dfrac{10}{2}=5\)
\(\Rightarrow\left\{{}\begin{matrix}a=5.1=5\\b=2.5=10\\c=3.5=15\end{matrix}\right.\)
b) \(a:b:c=3:4:5\)
\(\Rightarrow\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}\)
\(\Rightarrow\dfrac{a^2}{9}=\dfrac{b^2}{16}=\dfrac{c^2}{25}\)
\(\Rightarrow\dfrac{2a^2}{18}=\dfrac{2b^2}{32}=\dfrac{3c^2}{75}\)
Áp dụng tính chất của dãy tỉ sô bằng nhau:
\(\Rightarrow\dfrac{2a^2}{18}=\dfrac{2b^2}{32}=\dfrac{3c^2}{75}=\dfrac{2a^2+2b^2-3c^2}{18+32-75}=\dfrac{-100}{-25}=4\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^2=\dfrac{4.18}{2}=36\\b^2=\dfrac{4.32}{2}=64\\c^2=\dfrac{4.75}{3}=100\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=\pm6\\b=\pm8\\c=\pm10\end{matrix}\right.\)
a) \(\dfrac{a}{5}=\dfrac{b}{4}\Rightarrow\dfrac{a^2}{25}=\dfrac{b^2}{16}\)
Áp dụng tính chất DTSBN :
\(\dfrac{a^2}{25}=\dfrac{b^2}{16}=\dfrac{a^2-b^2}{25-16}=\dfrac{1}{9}\)
\(\Rightarrow\left\{{}\begin{matrix}a^2=\dfrac{1}{9}\cdot25=\dfrac{25}{9}\\b^2=\dfrac{1}{9}\cdot16=\dfrac{16}{9}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\dfrac{5}{3};b=\dfrac{4}{3}\\a=\dfrac{-5}{3};b=-\dfrac{4}{3}\end{matrix}\right.\)
Vậy \(\left(a;b\right)\in\left\{\left(\dfrac{5}{3};\dfrac{4}{3}\right);\left(-\dfrac{5}{3};-\dfrac{4}{3}\right)\right\}\)
b) \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\Rightarrow\dfrac{a^2}{4}=\dfrac{b^2}{9}=\dfrac{c^2}{16}\)
Áp dụng tính chất DTSBN :
\(\dfrac{a^2}{4}=\dfrac{b^2}{9}=\dfrac{c^2}{16}=\dfrac{2c^2}{32}=\dfrac{a^2-b^2+2c^2}{4-9+32}=\dfrac{108}{27}=4\)
\(\Rightarrow\left\{{}\begin{matrix}a^2=4.4=16\\b^2=4.9=36\\c^2=4,16=64\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=4;=6;c=8\\a=-4;b=-6;c=-8\end{matrix}\right.\)
Vậy (a;b;c) \(\in\left\{\left(4;6;8\right);\left(-4;-6;-8\right)\right\}\)