K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2017

Phân thức đại số

8 tháng 7 2016

Ta có:

\(a^2+ac-b^2-bc=\left(a^2-b^2\right)+\left(ac-bc\right)\)

                                    \(=\left(a-b\right)\left(a+b\right)+c\left(a-b\right)\)

                                    \(=\left(a-b\right)\left(a+b+c\right)\)(1)

\(b^2+ab-c^2-ac=\left(b^2-c^2\right)+\left(ab-ac\right)\)

                                    \(=\left(b-c\right)\left(b+c\right)+a\left(b-c\right)\)

                                    \(=\left(b-c\right)\left(a+b+c\right)\)(2)

\(c^2+bc-a^2-ab=\left(c^2-a^2\right)+\left(bc-ab\right)\)

                                    \(=\left(c-a\right)\left(a+c\right)+b\left(c-a\right)\)

                                    \(=\left(c-a\right)\left(a+b+c\right)\)(3)

Ta có : \(\frac{1}{\left(b-c\right)\left(a^2+ac-b^2-bc\right)}\)\(+\frac{1}{\left(c-a\right)\left(b^2+ab-c^2-ac\right)}\)\(+\frac{1}{\left(a-b\right)\left(c^2+bc-a^2-ab\right)}\)(*)

Thế (1),(2),(3) vào (*)

=>\(\frac{1}{\left(b-c\right)\left(a-b\right)\left(a+b+c\right)}+\frac{1}{\left(c-a\right)\left(b-c\right)\left(a+b+c\right)}+\frac{1}{\left(a-b\right)\left(c-a\right)\left(a+b+c\right)}\)

\(\Leftrightarrow\frac{\left(c-a\right)+\left(a-b\right)+\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)}=0\)

8 tháng 7 2016

Dễ thôi bạn chỉ cần quy đồng thôi

\(\frac{1}{\left(b-c\right)\left(a^2+ac-b^2-bc\right)}+\frac{1}{\left(c-a\right)\left(b^2+ab-c^2-ac\right)}+\)\(\frac{1}{\left(a-b\right)\left(c^2+bc-a^2-ab\right)}\)

=\(\frac{1}{\left(b-c\right)\left(a-b\right)\left(a+b+c\right)}+\frac{1}{\left(c-a\right)\left(b-c\right)\left(a+b+c\right)}\)\(+\frac{1}{\left(a-b\right)\left(c-a\right)\left(a+b+c\right)}\)

=\(\frac{c-a+a-b+b-c}{\left(b-c\right)\left(a-b\right)\left(a+b+c\right)}=0\)

8 tháng 7 2016

Ta có :\(\left(a-b\right)\left(c^2+bc-a^2-ab\right)=\left(a-b\right)\left[\left(c^2-a^2\right)+\left(bc-ab\right)\right]\)

                                                          \(=\left(a-b\right)\left(c-a\right)\left(a+b+c\right)\)

Tương tự : \(\left(b-c\right)\left(a^2+ac-b^2-bc\right)=\left(b-c\right)\left(a-b\right)\left(a+b+c\right)\)

                    \(\left(c-a\right)\left(b^2+ab-c^2-ac\right)=\left(c-a\right)\left(b-c\right)\left(a+b+c\right)\)

\(MTC=\left(a-b\right)\left(b-c\right)\left(c-s\right)\left(a+b+c\right)\)

Kí hiệu biểu thức đã cho bởi \(Q\),ta có :

         \(Q=\frac{c-a+a-b+b-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)}=0\)

30 tháng 12 2017

Bài 1:

\(3a.\left(2a^2-ab\right)=6a^3-3a^2b\)

\(\left(4-7b^2\right).\left(2a+5b\right)=8a+20b-14ab^2-35b^3\)

Bài 2:

\(2x^2-6x+xy-3y=2x.\left(x-3\right)+y.\left(x-3\right)=\left(x-3\right).\left(2x+y\right)\)

Bài 3: Tại x = 3/2, y =1/3 thì Q = 67/9

Bài 4:

 \(\left(\frac{1}{x+1}+\frac{2x}{1-x^2}\right).\left(\frac{1}{x-1}\right)\) \(\frac{1}{\left(x+1\right).\left(x-1\right)}+\frac{2x}{\left(1-x^2\right).\left(x-1\right)}=\frac{x-1}{\left(x+1\right).\left(x-1\right)^2}+\frac{-2x}{\left(x-1\right)^2.\left(x+1\right)}\)  

\(\frac{x-1-2x}{\left(x+1\right).\left(x-1\right)^2}=\frac{-\left(x+1\right)}{\left(x+1\right).\left(x-1\right)^2}=\frac{-1}{\left(x-1\right)^2}\)

13 tháng 10 2017

2) = ab(a-b) - bc(c-b) + ca(c-a) 

= ab(a-b) - bc(c-a+a-b) + ca(c-a) 

= ab(a-b) - bc(c-a) - bc(a-b) + ca(c-a)

= b(a-b)(a-c) + c(c-a)(a-b)

= b(a-b)(a-c) - c(a-c)(a-b)

= (a-b)(a-c)(b-c) 

nhớ k cho mình 

13 tháng 10 2017

mọi người bảo mk bài 1 vs