Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`Answer:`
`a)`
`A=5(x+1)^2-3(x-3)^2-4(x^2-4)`
`=>A=5(x^2+2x+1)-3(x^2-6x+9)-4x^2+16`
`=>A=5x^2+10x+5-3x^2+18x-27-4x^2+16`
`=>A=(5x^2-3x^2-4x^2)+(10x+18x)+(5-27+16)`
`=>A=-2x^2+28x-6`
`b)`
`B=5(x+1)^2-3(x-3)^2-4(x+2)(x-2)`
`=2x(3x+5)-3(3x+5)-2x(x^2-4x+4)-[(2x)^2-3^2]`
`=6x^2+10x-9x-15-2x^3+8x^2-8x-4x^2+9`
`=(6x^2-4x^2+8x^2)-2x^3+(10x-9x-8x)+(-15+9)`
Thay `x=-7` vào ta được:
`B=10(-7)^2-2(-7)^3-7(-7)-6`
`=>B=10.49-2(-343)+49-6`
`=>B=490+686+49-6`
`=>B=1219`
1/
a/ \(D=2x\left(10x^2-5x-2\right)-5x\left(4x^2-2x-1\right)\)
\(D=2x\left[10\left(x^2-\frac{1}{2}x-\frac{1}{5}\right)\right]-5x\left[4\left(x^2-\frac{1}{2}x-\frac{1}{4}\right)\right]\)
\(D=20x\left(x^2-\frac{1}{2}x-\frac{1}{5}\right)-20x\left(x^2-\frac{1}{2}x-\frac{1}{4}\right)\)
\(D=20x^3-10x^2-4x-20x^3+10x^2+5x\)
\(D=x\)
b/ Mình xin sửa lại đề:
Tính giá trị biểu thức \(E\left(x\right)=x^5-13x^4+13x^3-13x^2+13x+2012\)
Tại x = 12
\(E\left(x\right)=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x-1\right)x+2012\)
\(E\left(x\right)=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2-x+2012\)
\(E\left(x\right)=2012-x\)
\(E\left(x\right)=2000\)
2/
a/ \(2x\left(x-5\right)-x\left(3+2x\right)=26\)
<=> \(2x^2-10x-3x-2x^2=26\)
<=> \(-13x=26\)
<=> \(x=-2\)
b/ Bạn vui lòng coi lại đề.
3a/ Ta có \(D=x\left(5x-3\right)-x^2\left(x-1\right)+x\left(x^2-6x\right)-10+3x\)
\(D=5x^2-3x-x^3+x^2+x^3-6x^2-10+3x\)
\(D=-10\)
Vậy giá trị của D không phụ thuộc vào x (đpcm)
a) ( x - 2 )(x + 2 ) + ( x - 3 )( x + 3 ) - 2x2
= x2 - 4 + x2 - 9 - 2x2
= - 4 - 9 = - 13
b ) ( x - 5 )(x + 5 ) + ( x - 7 )( x + 7 ) - 2x2
= x2 - 25 + x2 - 49 - 2x2
= - 25 - 49 = - 84
a) \(A=\left(5-x\right)\left(x+5\right)-2\left(x-1\right)\left(x-3\right)-3\left(x-2\right)^2\)
\(=\left(5-x\right)\left(5+x\right)-\left(2x-2\right)\left(x-3\right)-3\left(x^2-2.2x+2^2\right)\)
\(=\left(5^2-x^2\right)-\left[2x\left(x-3\right)-2\left(x-3\right)\right]-3\left(x^2-4x+4\right)\)
\(=25-x^2-\left[\left(2x^2-6x\right)-\left(2x-6\right)\right]-3x^2+12x-12\)
\(=25-x^2-\left(2x^2-6x-2x+6\right)-3x^2+12x-12\)
\(=25-x^2-2x^2+6x+2x-6-3x^2+12x-12\)
\(=7+20x-6x^2\)
b/ \(B=\left(3-2x\right)\left(x-2\right)+\left(2x-5\right)^2-\left(x-4\right)\)
\(=3\left(x-2\right)-2x\left(x-2\right)+\left[\left(2x\right)^2-2.2x.5+5^2\right]-x+4\)
\(=3x-6-2x^2+4x+4x^2-20x+25-x+4\)
\(=23-14x+2x^2\)
c/ \(C=\left(x-4\right)\left(x-2\right)-3\left(x-2\right)\left(3-2x\right)-\left(2x+1\right)^2\)
\(=x\left(x-2\right)-4\left(x-2\right)-\left(3x-6\right)\left(3-2x\right)-\left[\left(2x\right)^2+2.2x.1+1^2\right]\)
\(=x^2-2x-4x+8-\left[3x\left(3-2x\right)-6\left(3-2x\right)\right]-4x^2-4x-1\)
\(=x^2-2x-4x+8-\left(9x-6x^2-18+12x\right)-4x^2-4x-1\)
\(=x^2-2x-4x+8-9x+6x^2+18-12x-4x^2-4x-1\)
\(=25-31x+3x^2\)
d/ \(D=2\left(x-1\right)^2-3\left(x-1\right)\left(x+2\right)-\left(2x+1\right)^2\)
\(=2.\left(x^2-2x+1\right)-\left(3x-3\right)\left(x+2\right)-\left[\left(2x\right)^2+2.2x+1\right]\)
\(=2x^2-4x+2-\left[3x\left(x+2\right)-3\left(x+2\right)\right]-\left(4x^2+4x+1\right)\)
\(=2x^2-4x+2-\left(3x^2+6x-3x-6\right)-\left(4x^2+4x+1\right)\)
\(=2x^2-4x+2-3x^2-6x+3x+6-4x^2-4x-1\)
\(=7-11x-5x^2\)
P/s: Ko chắc ạ!
a) \(\left(x-3\right)\left(3x+2\right)-3x\left(x-5\right)+3\)
\(=x.\left(3x+2\right)-3.\left(3x+2\right)-3x\left(x-5\right)+3\)
\(=x.3x+x.2-3.3x-3.2-3x.x+3x.5+3\)
\(=3x^2+2x-9x-6-3x^2+15x+3\)
\(=8x-3\)
b )
\(2x\left(x-3\right)-\left(x-5\right)\left(2x-1\right)\)
\(2x.x-2x.3-x.\left(2x-1\right)-5.\left(2x-1\right)\)
\(2x.x-2x.3-x.2x+x.1-5.2x+5.x\)
\(2x^3-6x-2x^2+x-10x+5x\)
\(2x^3-15x-2x^2\)
Bài 1 :
a. ( x + 3 ) ( x - 3 ) - ( x - 3 )2 = ( x - 3 )( x + 3 - 3 ) = x( x - 3 ) = x2 - 3x
b. (x + 8 )2 + 2(x + 8 ) ( x - 2 ) + ( x - 2 )2 = ( x + 8 +x - 2 )2 = ( 2x + 6 )2
c.( x - 2 )(x + 2 ) - ( x - 2 )(x2 + 2x + 4 )
= x2 - 4 - x3 + 8 = -x3 + x2 + 4
Bài 2 :
\(a.3x\left(x+5\right)-2x-10=0\\ 3x\left(x+5\right)-2\left(x+5\right)=0\)
\(\Rightarrow\left(3x-2\right)\left(x+5\right)=0\\ \Rightarrow\left[{}\begin{matrix}3x-2=0\\x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-5\end{matrix}\right.\)
\(b.2x^2-10x=0\\ 2x\left(x-5\right)=0\\ \Rightarrow\left\{{}\begin{matrix}2x=0\\x-5=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
\(c.2x^3-50x=0\\ 2x\left(x^2-25\right)=0\\ \Leftrightarrow2x\left(x+5\right)\left(x-5\right)=0\\ \Rightarrow\left[{}\begin{matrix}2x=0\\x+5=0\\x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-5\\x=5\end{matrix}\right.\)
Bài 3 :
\(a.A=x^2-6x+11\\ =x^2-2\cdot3\cdot x+9+2\\ =\left(x-3\right)^2+2\)
Mà ( x - 3 )2 ≥ 0 , 2 > 0
=> \(\left(x-3\right)+2>0\forall x\)
\(b.P=x^2-2x+5\\ =x^2-2x+1+4\\ =\left(x-1\right)^2+4\ge4\\ \Rightarrow GTNN\left(P\right)=4\Leftrightarrow\left(x-1\right)=0\Rightarrow x=1\)
\(c.Q=4x-x^2+3\\ =-\left(x^2-4x-3\right)\\ =-\left(x^2-2\cdot2\cdot x+4-7\right)\\ =-\left[\left(x-2\right)^2-7\right]\\ =-\left(x-2\right)^2+7\Rightarrowđềsai\)