K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2022

áp dụng định lý phân giác ta có:\(\left\{{}\begin{matrix}\dfrac{DB}{DC}=\dfrac{AB}{AC}\\\dfrac{EC}{EA}=\dfrac{BC}{AB}\\\dfrac{FA}{FB}=\dfrac{AC}{BC}\end{matrix}\right.\)

\(\dfrac{DB}{DC}.\dfrac{EC}{EA}.\dfrac{FA}{FB}=\dfrac{AB}{AC}.\dfrac{BC}{AB}.\dfrac{AC}{BC}=1\)

19 tháng 1 2020

Bài này bạn tự vẽ hình nha

Áp dụng tính chất phân giác trong ta có :

AD là phân giác góc A \(\Rightarrow\frac{DB}{DC}=\frac{AB}{AC}\)

Tương tự :\(\frac{EC}{EA}=\frac{BC}{AB};\frac{FA}{FB}=\frac{CA}{BC}\)

Do đó : \(\frac{DB}{DC}.\frac{EC}{EA}.\frac{FA}{FB}=\frac{AB.AC.BC}{AB.AC.BC}=1\)

ĐPCM. tik mik nha !!!!

12 tháng 3 2017

Áp dụng tính chất đường phân giác trong tam giác ABC ta có:

\(\dfrac{DB}{DC}=\dfrac{AB}{AC}\left(1\right)\)

\(\dfrac{EC}{EA}=\dfrac{BC}{AB}\left(2\right)\)

\(\dfrac{FA}{FB}=\dfrac{AC}{BC}\left(3\right)\)

Nhân cả hai vế của (1),(2) và (3) ta có:

\(\dfrac{DB}{DC}.\dfrac{EC}{EA}.\dfrac{FA}{FB}=\dfrac{AB}{AC}.\dfrac{BC}{AB}.\dfrac{AC}{BC}=1\)

ĐPCM

DB/DC*EC/EA*FA/FB

\(=\dfrac{AB}{AC}\cdot\dfrac{BC}{BA}\cdot\dfrac{CA}{CB}=1\)

DB/DC=AB/AC

EC/EA=BC/BA

FA/FB=CA/CB

=>DB/DC*EC/EA*FA/FB=(AB*BC*AC)/(AC*BA*CB)=1

22 tháng 4 2017

a) Chứng minh AHAHAH′AH = BCBCB′C′BC

Vì B'C' // với BC => BCBCB′C′BC = ABABAB′AB (1)

Trong ∆ABH có BH' // BH => AHAHAH′AH = ABBCAB′BC (2)

Từ 1 và 2 => BCBCB′C′BC = AHAHAH′AH

b) B'C' // BC mà AH ⊥ BC nên AH' ⊥ B'C' hay AH' là đường cao của tam giác AB'C'.

Áp dụng kết quả câu a) ta có: AH' = 1313 AH

BCBCB′C′BC = AHAHAH′AH = 1313 => B'C' = 1313 BC

=> SAB’C’= 1212 AH'.B'C' = 1212.1313AH.1313

21 tháng 2 2018

a) Chứng minh AH′AHAH′AH = B′C′BCB′C′BC

Vì B'C' // với BC => B′C′BCB′C′BC = AB′ABAB′AB (1)

Trong ∆ABH có BH' // BH => AH′AHAH′AH = AB′BCAB′BC (2)

Từ 1 và 2 => B′C′BCB′C′BC = AH′AHAH′AH

b) B'C' // BC mà AH ⊥ BC nên AH' ⊥ B'C' hay AH' là đường cao của tam giác AB'C'.

Áp dụng kết quả câu a) ta có: AH' = 1313 AH

B′C′BCB′C′BC = AH′AHAH′AH = 1313 => B'C' = 1313 BC

=> SAB’C’= 1212 AH'.B'C' = 1212.1313AH.1313BC

=>SAB’C’= (1212AH.BC)1919

mà SABC= 1212AH.BC = 67,5 cm2

Vậy SAB’C’= 1919.67,5= 7,5 cm2


12 tháng 3 2020

Trong ∆ ABC ta có: DE // AC (gt)

Suy ra: \(\frac{AE}{AB}=\frac{CD}{CB}\)(định lí Ta-lét) (1)

Lại có: DF // AB (gt)

Suy ra: \(\frac{AF}{AC}=\frac{BD}{BC}\)(định lí Ta-lét) (2)

Cộng trừ vế (1) và (2), ta có:

\(\frac{AE}{AB}+\frac{AF}{AC}=\frac{CD}{BC}+\frac{BD}{BC}=\frac{BC}{BC}=1\)