K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2017

Áp dụng tính chất đường phân giác trong tam giác ABC ta có:

\(\dfrac{DB}{DC}=\dfrac{AB}{AC}\left(1\right)\)

\(\dfrac{EC}{EA}=\dfrac{BC}{AB}\left(2\right)\)

\(\dfrac{FA}{FB}=\dfrac{AC}{BC}\left(3\right)\)

Nhân cả hai vế của (1),(2) và (3) ta có:

\(\dfrac{DB}{DC}.\dfrac{EC}{EA}.\dfrac{FA}{FB}=\dfrac{AB}{AC}.\dfrac{BC}{AB}.\dfrac{AC}{BC}=1\)

ĐPCM

23 tháng 1 2022

áp dụng định lý phân giác ta có:\(\left\{{}\begin{matrix}\dfrac{DB}{DC}=\dfrac{AB}{AC}\\\dfrac{EC}{EA}=\dfrac{BC}{AB}\\\dfrac{FA}{FB}=\dfrac{AC}{BC}\end{matrix}\right.\)

\(\dfrac{DB}{DC}.\dfrac{EC}{EA}.\dfrac{FA}{FB}=\dfrac{AB}{AC}.\dfrac{BC}{AB}.\dfrac{AC}{BC}=1\)

19 tháng 1 2020

Bài này bạn tự vẽ hình nha

Áp dụng tính chất phân giác trong ta có :

AD là phân giác góc A \(\Rightarrow\frac{DB}{DC}=\frac{AB}{AC}\)

Tương tự :\(\frac{EC}{EA}=\frac{BC}{AB};\frac{FA}{FB}=\frac{CA}{BC}\)

Do đó : \(\frac{DB}{DC}.\frac{EC}{EA}.\frac{FA}{FB}=\frac{AB.AC.BC}{AB.AC.BC}=1\)

ĐPCM. tik mik nha !!!!

DB/DC*EC/EA*FA/FB

\(=\dfrac{AB}{AC}\cdot\dfrac{BC}{BA}\cdot\dfrac{CA}{CB}=1\)

DB/DC=AB/AC

EC/EA=BC/BA

FA/FB=CA/CB

=>DB/DC*EC/EA*FA/FB=(AB*BC*AC)/(AC*BA*CB)=1

27 tháng 11 2017

Học sinh tự thực hiện

12 tháng 3 2020

Kết quả tìm kiếm | Học trực tuyến

12 tháng 3 2020

Ta có AD,BE,CF là các ph/giác nên

\(\frac{AE}{EC}=\frac{AB}{BC}\left(1\right),\frac{CD}{DB}=\frac{AC}{AB}\left(2\right),\frac{BF}{FA}=\frac{BC}{AC}\left(3\right)\)

Nhân (1),(2) và (3) có VT=\(\frac{AB}{BC}.\frac{AC}{AB}.\frac{BC}{AC}=1\)