Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E F
Áp dụng tính chất đường phân giác ta có:
\(\frac{DB}{DC}=\frac{AB}{AC}\left(1\right)\)
\(\frac{EC}{EA}=\frac{BC}{BA}\left(2\right)\)
\(\frac{FA}{FB}=\frac{CA}{CB}\left(3\right)\)
\(\left(1\right)\left(2\right)\left(3\right)\Rightarrow\frac{DB}{DC}\cdot\frac{EC}{AE}\cdot\frac{FA}{FB}=\frac{AB}{AC}\cdot\frac{BC}{BA}\cdot\frac{CA}{CB}=\frac{AB\cdot BC\cdot CA}{AC\cdot BA\cdot CB}=1\)
=> ĐPCM
Nguồn: SGK
AD,BE,CF không là các đường phân giác vẫn đúng,miễn sao chúng đồng quy là OK !
áp dụng định lý phân giác ta có:\(\left\{{}\begin{matrix}\dfrac{DB}{DC}=\dfrac{AB}{AC}\\\dfrac{EC}{EA}=\dfrac{BC}{AB}\\\dfrac{FA}{FB}=\dfrac{AC}{BC}\end{matrix}\right.\)
\(\dfrac{DB}{DC}.\dfrac{EC}{EA}.\dfrac{FA}{FB}=\dfrac{AB}{AC}.\dfrac{BC}{AB}.\dfrac{AC}{BC}=1\)
Bài này bạn tự vẽ hình nha
Áp dụng tính chất phân giác trong ta có :
AD là phân giác góc A \(\Rightarrow\frac{DB}{DC}=\frac{AB}{AC}\)
Tương tự :\(\frac{EC}{EA}=\frac{BC}{AB};\frac{FA}{FB}=\frac{CA}{BC}\)
Do đó : \(\frac{DB}{DC}.\frac{EC}{EA}.\frac{FA}{FB}=\frac{AB.AC.BC}{AB.AC.BC}=1\)
ĐPCM. tik mik nha !!!!
Áp dụng tính chất đường phân giác trong tam giác ABC ta có:
\(\dfrac{DB}{DC}=\dfrac{AB}{AC}\left(1\right)\)
\(\dfrac{EC}{EA}=\dfrac{BC}{AB}\left(2\right)\)
\(\dfrac{FA}{FB}=\dfrac{AC}{BC}\left(3\right)\)
Nhân cả hai vế của (1),(2) và (3) ta có:
\(\dfrac{DB}{DC}.\dfrac{EC}{EA}.\dfrac{FA}{FB}=\dfrac{AB}{AC}.\dfrac{BC}{AB}.\dfrac{AC}{BC}=1\)
ĐPCM
a: Xét ΔDBA vuông tại D và ΔABC vuông tại A có
góc ABC chung
Do đó: ΔDBA\(\sim\)ΔABC
Suy ra: DB/AB=AB/BC(1)
b: Xét ΔBDA có BFlà phân giác
nên DF/FA=DB/AB(2)
Xét ΔABC có BE là phân giác
nên AE/EC=BA/BC(3)
Từ (1), (2) và (3) suy ra DF/FA=AE/EC
DB/DC*EC/EA*FA/FB
\(=\dfrac{AB}{AC}\cdot\dfrac{BC}{BA}\cdot\dfrac{CA}{CB}=1\)
Kết quả tìm kiếm | Học trực tuyến
Ta có AD,BE,CF là các ph/giác nên
\(\frac{AE}{EC}=\frac{AB}{BC}\left(1\right),\frac{CD}{DB}=\frac{AC}{AB}\left(2\right),\frac{BF}{FA}=\frac{BC}{AC}\left(3\right)\)
Nhân (1),(2) và (3) có VT=\(\frac{AB}{BC}.\frac{AC}{AB}.\frac{BC}{AC}=1\)